CHAPTER 6

SURFACE DEPOSITION OF POLLUTANT MATERIAL

6.1 Introduction

A significant process that influences the concentration predictions
of the airshed model is the interaction of the pollutants with the
ground. Roberts (1975), for example, estimated that in the Los Angeles
Basin almost half of the sulfur oxides are removed at the ground before
air parcels leave the airshed. The objective of this section is to
develop an upper limit expression for the rate at which gaseous material
is removed at the surface. In most models the deposition rate is
described by a single quantity, the pollutant deposition velocity‘vg.
The flux of material, F, directed towards the lower boundary surface is

defined by

F = vg c(zr) (6.1)

where c(zr) is the concentration of the material at some reference
height z_- A basic problem with (6.1) is that it does not explicitly
represent the fact that dry deposition involves a complex linkage
between turbulent diffusion in the surface bowndary layer, molecular
scale motion at the air-ground interface and chemical interaction of
the material with the surface. Various physical processes are
involved including gravitational settling, turbulent and molecular

diffusion, inertial impaction, phoretic and electrical effects. Imn
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addition to these removal phenomena, depcsited material can be desorbed
or mechanically resuspended. Reviews of the general subject of dry
deposition are included in the works of Chamberlain (1966), Hill and
Chamberlain (1974), Kneen and Strauss (1969), Liu and Ilori (1974),

Sehmel and Hodgson (1974), Slinn (1974), Davidson (1977), National Academy

of Sciences (1978), McMahon and Denison (1979), and Sehmel (1980).

As a first step towards improving upon the model (6.1) it is
necessary to recognize that there are two basic components associated
with pollutant removal: one is the transport of material to the ground
and the other is the interaction of the pollutants with the surface.
Unless extensive field experiments have been made in the airshed, it
is not possible to accurately characterize the second component of the
dry deposition process. An alternative approach, and the focus of
this chapter, is to develop an upper limit for vg in terms of the
transport processes and the concentration at a reference point above
the surface. (Typically the height of the lowest computational grid
point in the airshed model.) A secondary goal is to identify the
significant meteorological variables and surface properties needed to
either correlate different measurements of vg or to modify the results

for different experimental conditions.

6.2 Deposition in the Constant Flux Layer

Consider the idealized representation of the airshed surface shown

in Figure 6.1. Within the layer 0 < z <z the deposition is assumed

to be a one-dimensional, steady-state, constant flux process occurring
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FIGURE 6.1

Idealized Representation of the Airshed Surface
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without re—entraimment and, in the case of aerosols, without particle
agglomeration. With these assumptions the deposition flux is described

by

F= [K(2) +D] % + v, elz) (6.2)

where Kp(z) is the pollutant eddy diffusion coefficient, D the molecular
diffusion coefficient of the material in air and Ve the terminal settling
velocity for particulate material. Equating the fluxes in expressions

(6.1) and (6.2) gives

z_ c(zr)
dz = de
f [Kp(z)+D] f (v c(z)) - v_c(2)] (6-3)
g r t
z4 c(zd)

The lower limits of integration Z4 and c(zd) refer to the elevation
and concentration of material at the effective pollutant sink height.
It is important to note that z4 is not in general equal to the surface
roughness z,, 2 height associated with the momentum sink (Brutsaert,

1975). If the terminal settling velocity is set to zero for the case

of gaseous materials then (6.3) can be written in the simpler form

v = (6.4)
z

jﬂr dz
;) K (=) ¥ 7]
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6.3 Eddy Diffusion of Momentum and Scalar Contaminants in the
Surface Layer

Since the model is intended to be used primarily in the surface
layer of the atmosphere, an expression for Kp(z) can be developed using
Monin-Obukhov similarity theory. The velccity shear and the pollutant

eddy diffusion coefficient, KD(z), are given by

Uy
and
k u, z
R (z) = ——— (6.6)
P &
¢p I

where k is the von Karman comstant, u, the friction velocity, L the

%
Monin-Obukhov length and ¢p, ¢m are universal functions which must be
determined by experiment (Monin and Yagiom, 1971). The ¢ functions are
basically correct for the effects of buoyancy on turbulence. Businger
et al. (1971) have constructed expressions for momentum ¢m and heat ¢H
from an analysis of field data taken under a wide variety of stability
conditions. A survey of the results of some experiments directed

at developing these functions is shown in Table 6.1. For the present

model the expressions adopted for momentum are

e 2 z
[14'4-7(i)] Stable; T 0
U z
¢m(L) = 1 Neutral; T 0 (6.7)
_1
A 4 z
\[1"15(E)] Unstable: 1< 0
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TABLE 6.1

Estimates of Turbulence Comstants from Surface-Layer Measurements
(Source: Busch, 1973)

z z

l+8mf ’i>0 l+BHf ,E>0

¢m ) z—l z ¢H ) 1 z
(l—a f)ll- ’E<O (]_—OI.H-]:) 2 ’E< 0
MOMENTUM HEAT
REFERENCE @ 8, Oy By ¢ (0 9 (0)

Businger et al. (1971) 15 4.7 9 6.4 0.74 —_—
Paulson (1970)
Badgley et al. (1972)} 16 / 16 / 1 1
Webb (1970) 18 5.2 9 5.2 1 1

Dyer and Hicks (1970) 16 —_— 16 - 1 1
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In addition to the transport relations for momentum there are some
data for ¢ functions associated with water vapor ¢w and heat ¢H.
Unfortunately, there are few direct experimental measurements of

pollutant fluxes in the atmospheric surface layer.

A decision must be made as to the form of the ¢ function for a
generalized passive scalar contaminant. For unstable conditions
(z/L < 0) the experimental evidence of Dyer and Hicks (1970) indicates

that ¢H, o = ¢m2. Galbally (1971) measured ozone profiles and fluxes

w
in the surface layer and concluded that the eddy transport mechanism
for O3 is similar to that for heat rather than momentum. On the basis

of these two studies and the data of Businger et al. (1971) the following

¢ functions have been adopted for pollutant transport.

C0.76+4.7(5 Stable; 2 >0
\LI L
o &) = J 0.74 Neutral; = = 0 (6.8)
pL : ? L *
_1
Z 2 z
g O.74[l—9(i)] Unstable; I <0

6.4 Upper Limit Deposition Model

Within the surface layer defined by zd_i z < z_ the bulk contribu-
tion to the diffusive tramsport from molecular diffusion is negligible.
Applying this assumption to equation (6.4) and in addition substituting

the flux gradient relation (6.6) for Kp(z) gives the following upper

limit to the deposition velocity.
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c(z )
k.[l -4 ]
c(z )
Vo= r (6.9)
© z
* 1 Z
[ = oD
24

Since u, is approximately constant with height in the surface layer

(Busch, 1973) and ¢p21 for zdizizo,the denominator of (6.9) can be ex-

panded to give

c(z.)

K2 az )| 1 - d

] c(zr)
Vg = ~ Z

i z r (6.10)
2y dz o zy'dz :
z] .G SLn(Zd) +zf 0@ S

o] Q

Evaluation of the term En(zo/zd) in the denominator of equation
(6.10) requires a knowledge of 24 and of the transfer processes at the
Based on a survey of the heat transfer literature and in

surface.

particular the work of Brutsaert (1975), Wesely and Hicks (1977) assumed

that
2

i 2
o\ _ Sc,3
2n<zg>— 252 (6.11)

where Sc and Pr are the Schmidt and Prandtl numbers associated with the

pollutant material in air. The complete model is then
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(6.12)

The integrals required to evaluate Vg are shown in Table 6.2.

6.5 Application of Deposition Model

The final result exposes a number of the limitations of the basic
model (6.1), in particular, the fact that vg is directly influenced by
the prevailing meteorology and atmospheric stability. The effect of
stability is particularly apparent; consider for example, the conditions
shown in Table 6.3 for a range of Sc/Pr ratios. With z/L in the range
-1.5 to +1.5, the deposition velocities vary by almost a factor of five.
This result indicates that under typical conditions there could be a
significant diurnal variation in the surface removal of pollutant
material. The functional dependence of Vg on the elevation above the
surface highlights the need for reporting the reference height z, in
field or laboratory studies. TIf Vg’ z,.s 2, and u(zr) are measured, then
it is possible to evaluate c(zd)/c(zr) and,in turn, vg for elevations
other than the reference height. This is a useful approach for
developing the deposition velocities for air quality models in which
z_ may be of 0(10-50 m). The variation of vg as a function of z/L

is shown in Figure 6.2.
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Deposition Velocity as a Function of Stability and Ratio of Sc¢/Pr*

=
O
O

TABLE 6.3

Deposition velocity v

as a function of stability (z/L)

= 1.5 1.0 0.5 0 0.5 1.0 1.5

0.6 1.36 1.26 1.13 0.51 0.49 0.31 0.21
0.8 1.28 1.20 1.07 0.50 0.47 0.30 0.21
1.0 1.22 1.14 1.02 0.48 0.46 0.29 0.20
1.2 1.17 1.09 0.98 0.47 0.44 0.29 0.20
1.4 1.12 1.05 0.95 0.46 0.43 0.28 0.19
1.6 1.09 0.01 0.92 0.44 0.42 0.27 0.19
1.8 1.05 0.98 0.89 0.43 0.41 0.27 0.19
2.0 1.02 0.95 0.86 0.42 0.41 0.27 0.19
2.2 0.99 0.92 0.84 0.42 0.40 0.26 0.18
2.4 0.96 0.90 0.82 0.41 0.39 0.26 0.18
2.6 0.93 0.87 0.80 0.40 0.38 0.25 0.18
2.8 0.91 0.85 0.78 0.39 0.38 0.25 0.18
3.0 0.89 0.84 0.76 0.39 0.37 0.25 0.17

%*
Conditions for calculations

u = 2.5 m/sec, z, = 0.0lm , z = 10m, c(z

=0
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Variation of Surface Deposition Velocity v, as a
Function of Atmospheric Stability and PollutantOSc/Pr Ratio
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Once the pollutant deposition velocity has been established, either
by direct measurement or estimated using the proposed model, the next
step is to develop a formal procedure for calculating the amount of
material removed at the ground. At the lower surface of the airshed the

pollutant removal is typically described by the boundary condition:

I
1y
|
~
vl
~~
N
p -
Q| Qo
N0

= - vg(zr) c(zr) (6.13)

Where z. is a reference elevation, Vg(zr) and c(zr) are the pollutant
deposition velocity and concentration at that height. Because of the
nonlinear nature of Kp(z), most mathematical descriptions of pollutant
transport require numerical solution. This can pose a problem in that
the elevation of the lowest computational grid point is typically much
higher than the reference height, z_: used to establish the pollutanf
deposition velocities. The situation is illustrated in Figure 6.3
where Az is the height of the bottom cell and Az>>zr. Because of the
need to approximate the vertical concentration profile in discrete
increments c(zr) is not readily available. When coupled with the
observation that vg varies with height there is a need to develop an
equivalent deposition velocity ;é that, when applied to the cell average
concentration, s correctly predicts the flux at the lower boundary.
One way to develop such a model is to assume that most of the lowest
cell is within the surface or constant flux layer. If this is the case

then the cell deposition velocity is given by
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v (z )c(z)
y = -2 T (6.14)

€1

(¢}

If = is to represent the average value of the actual vertical concen-
tration distribution in the range z. <z < Az then it must be equivalent

to

Az

! .
¢ = Az—zr jf c(z)dz (6.15)

4
r

Within the constant flux layer c(z) is given by

2

e(z) = elz) |1+ vg(zr)[%% dz (6.16)
z
r

The equivalent cell deposition velocity can now be determined by combining

(6.16), (6.15), (6.14) and (6.6) to give

Vg(zr)

v (z) Az =z
T %, dx
L+ ku, (Az - zr) _[ ]F¢pcf) x dz
Z_z
r “r

(6.17)

< |
i}

The integrals needed to evaluate the denominator of (6.17) are shown in
Table 6.3. An example of the variation of ;é with cell size and atmo-
spheric stability is shown in Figure 6.4, and, as can be expected, the

equivalent deposition velocity becomes smaller as Az increases. The
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Variation of Average Deposition Velocity as a
Function of Atmospheric Stability and the Cell Height

(zo = 0.0l m, u=2.5m/s, vg(zr)==0.01 m/s)
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variation is most pronounced under stable conditions because of the
reduced vertical mixing. One implication of this result is that if
Vg(zr), rather than ;é, were to be used in a practical calculation then

the surface removal flux would be considerably overestimated.

In order to illustrate how diurnal variations in atmospheric
stability influence the surface removal processes consider a column of
air of height H containing an initial distribution, c(z,0), of a non-
reacting species. If there are no other competing processes the

fraction of material remaining in the columm at time t is given by

h
]. c(z,t)dz

M_(t) = ° (6.18)
£ h

d[ c(z,0)dz

By neglecting both vertical wind shear and advection the pollutant

transport can be described by

€ = LR (2) = (6.19)

with the boundary conditions at the surface and at the column top given

by
K (z) 2% =0 .z =H (6.20)
o) dz ?
and
K (z) de _ v c : z =z (6.21)
P dz g ’ r
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Once the initial conditions vg(zr) and Kp(z) have been specified the
numerical procedures described in Chapter 8 can be used to predict the
evolution of the vertical concentration distribution. As an illustration,
Figures 6.5 and 6.6 depict the variations of c(z,t) and Mf(t) within

an air parcel as it traverses a typical urban airshed. There is quite

a pronounced variation in both the vertical diffusion and surface
deposition rate during the diurmal cycle. The surface depletion rate,
expressed in terms of the deposition velocity, and the total material
loss show a complex dependence on the time of day, the extent of

vertical mixing and surface conditions. The point of this calculation

is to illustrate that the use of a single diurnal average vg could lead
to a significant over-prediction of the amount of material removed during
the nighttime. This conclusion further reinforces the need for careful
reporting of atmospheric conditions during field studies directed at

establishing surface removal fluxes.

6.6 Experimental Methods for Determining Deposition Velocities

In the previous section primary attention was directed at developing
an upper limit estimate of the rate at which pollutants can be transported
to the ground. Whether this flux corresponds to the actual removal rate
depends to a large extent on the conditions and type of the underlying
surface. Garland (1974), for example, has observed an order of magnitude
difference in the ozone (03) deposition velocity over different soil
types. If c(zd) is the pollutant concentration at the effective sink

height, CFP then the upper and lower limits on vg correspond to
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Time Evolution of a Typical Vertical Concentration Profile
for an Air Parcel Traversing an Urban Airshed
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the conditions c(zd) = 0 and c(zr) = c(zd). If a lower bound on Vg is
required then it is important to be able to estimate the concentration
difference c(zr) - c(zd). At present the only satisfactory means for
establishing the surface condition is by experimental measurement.

This section presents a brief survey of field and laboratory techniques
for determining deposition velocities for gaseous species which partici-

pate in photochemical reaction processes.

Whether pollutant deposition velocities are measured in the field
or under laboratory conditions usually one of three basic techniques
is employed. These methods include: the use of radioactive tracers, free
stream concentration decay measurements and gradient or profile
determinations. The most common laboratory procedure is called the flux
method which equates free stream concentration decay rates to the
surface removal fluxes. Garland and Penkett (1976) measured the
concentration decay of peroxy acetyl nitrate (PAN) as it passed over
different surfaces in a wind tumnel. Given the concentration difference,
the travel time over the surface and the wind tunnel dimensions, it is a
simple task to infer the net deposition flux and in turn determine the
deposition velocity. A similar technique was used by Hill and
Chamberlain (1974) to establish the pollutant influx required to maintain
a constant concentration over different plant canopies. More recently
the emergence of fast response pollutant detectors has enabled a
direct measurement of the vertical turbulent flux. Wesely et al. (1977)

recorded the velocity, w', and concentration, c¢', fluctuations at a
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reference height of z. = 5 m and evaluated Vg directly using

- :
—= (6.23)

where w'c' is the time averaged vertical turbulent flux and c the
average concentration. The averaging time for the results reported in

Wesely et al. (1977) was 0(10 minutes).

Another means for determining deposition velocities is to employ
isotopic labelling techniques. If isotopes, with low natural abundances,
are used then the task of differentiating between material previously
present at the surface and the amount deposited during the experiment
is considgrably simplified. Owens and Powell (1974) released sulfur

dioxide (SOZ), labelled with the sulfur isotope 16835’ and measured
the accumulation of 35802 at the ground. Given the exposure time, T,

5 . . A
and the 3 802 concentration at the reference elevation the deposition

velocity is given by

35802 Activity at the Ground
35
T SOZ(zr)

Vg(zr) = (6.24)

Chamberlain (1966) used thorium - B (82Pb212), in a wind tunmel, to

measure the vertical flux of pollutant materials towards grass and
similar surfaces as a function of the concentration difference between

the reference height and the surface.
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The most common technique used in field studies is the gradient
or profile method. This procedure utilizes measurements at two or more
elevations to establish the vertical concentration gradient dc¢c/dz. If
the momentum, heat, water vapor, and pollutant fluxes are constant
within the surface layer then the Monin-Obukhov similarity hypothesis,
coupled with the measured vertical gradient, gives the pollutant

deposition velocity

KE(Z) Jc l
Vg(zr) = e (2) Y. l . (6.25)
T

The turbulent eddy diffusivity Kp(z) can be estimated using the methods
presented in Chapter 4 or determined from energy budget measurements
using a mass transfer analogy. An alternative approach is to assume that
the pollutant transport is similar to that of water vapor and employ

a stability dependent bulk transfer coefficient to approximate the
surface flux. Given the measured concentration profile the deposition

velocity is simply

c(zh) - c(zd)

vg(zr) = Cu(zh) c(zr) — C(zd) (6.26)

where C is the aerodynamic transfer coefficient and G(zh) is the mean

wind speed at an elevation z, above the ground. Whelpdale and Shaw

h
(1974) used (6.26) to evaluate 502 deposition velocities over different
surfaces for a range of stability conditioms. Further, more detailed

discussions of the profile and other methods are given in Garland (1974)

and Droppo and Hales (1974).
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6.7 Literature Survey of Deposition Velocity Measurements

A major goal of developing the upper limit deposition model was to
establish the surface removal rates for those species which participate
in photochemical reactions. A partial list of these species includes
nitric oxide (NO), nitrogen dioxide (N02), ozone (03), peroxy acetyl
nitrate (PAN), hydrogen peroxide (3202), nitrous acid (HONO), nitric
acid (HNOB),carbon monoxide (CO), reactive hydrocarbons, organic and
inorganic radicals. An extensive literature search was carried out to
identify experimental determinations of ground level deposition velocities
for each of these species. The results, presented in Table 6.5, include
additional values excerpted from the comprehensive surveys conducted by
Droppo (1976), Slinn et al. (1978) and McMahon and Denison (1979). 1In
constructing the table an attempt has been made to summarize those
factors which influence the estimates,namely the experimental technique,
reference height, type of surface, moisture conditions and the atmo-

spheric conditions.

Considering the important role of deposition in establishing
ambient concentration levels the most striking feature of Table 6.5 is
the paucity of reported results. The problem is further compounded by
inadequate documentation of the atmospheric conditions prevailing during
each of the experiments. Unless sufficient meteorological data are
reported it is difficult to separate whether the turbulent transport or
chemical nature of the underlying surface is controlling the deposition.
The limited data reported in the table are, unfortunately, insufficient

to adequately verify the quantative performance of the upper limit model.
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A qualitative indication can, however, be gained by examining the study
of sulfur dioxide (SOZ) deposition carried out by Whelpdale and Shaw
(1974). Their results, presented in Table 6.6, clearly demonstrate that
the influence of atmospheric stability is consistent with the calculated
variation shown in Figure 6.Z. During stable conditions the deposition
flux is primarily controlled by the rate at which material can be
transported to the surface. Such circumstances are likely to occur

at night. During the daytime the deposition rate is much more likely to

be influenced by the chemical interaction at the surface.

Table 6.7 summarizes the deposition velocities derived from the
literature survey. The accompanying concentration ratios, based on a
reference elevation z. = 1 m, are for use in the airshed model. The data

should only be considered as estimates.

6.8 Conclusions

In this chapter a simple upper limit model for pollutant deposition
velocities has been presented. The principal features of the formulation
are: an explicit treatment of atmospheric stability and a formal
procedure for determining equivalent cell average deposition velocities
for use in numerical calculations. The fact that atmospheric stability
has such a pronounced effect on the surface fluxes points to the need
for careful reporting of meteorological conditions during field studies.
This would enable an independent assessment of whether the limits on vg

are set by the eddy diffusion or by the ability of the underlying surface

to assimilate the material. In terms of future work considerably more
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TABLE 6.6

Average Deposition Velocity of S0» for
Different Surface and Stability Conditions

NUMBER OF DEPOSITION VELOCITY

SURFACE STABILITY EXPERIMENTS vg(cm/s)
Grass Rib < -0.02 10 2.4
-0.02 < Rib < (.02 3 2.6
Ri, > 0.02 2 0.5
b
Snow Rib < -0.02 1 1.6
-0.02 < Rib < 0.02 3 0.52
Rib > 0.02 8 0.05
Water Rib < =0.02 7 4.0
-0.02 < Rib < 0.02 7 2.2
Rib > 0.02 4 0.16

a. Source: Whelpdale and Shaw (1974)

Stability is defined in terms of the bulk Richardson Number Rib

A9
— 2
(buw)
where T is the ambient temperature, Az difference in sampling

heights, A6 the potential temperature difference and Au the wind
speed.

. _ 8
Rlb T Az



TABLE 6.7

Summary of Deposition Velocity Data
and Concentration Ratios

CONCENTRATION RATIO
DEPOSITION VELOCITY RANGE

SPECTES vg(cm/s) 1 - %%zi%
O3 0.025 - 6.3 0.8
N02 0.5 - 2.0 0.6
PAN 0.14 - 0.63 0.25
Co 0.0 -~ 0.03 0.0

NO 0.0 - 0.10 0.1
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attention needs te be given to characterizing the physical and chemical
processes occuring in the layer Z 3 <z f_zo. At present there are no
satisfactory theoretical treatments of the mass transfer close to the
surface. Even more serious is the limited amount of field data on

pollutant uptake at the surface.

A basic limitation of the model is the reliance on Monin-Obukhov
similarity theory to characterize the material fluxes. While this
formally restricts applications to steady conditions and values
[z/L]<:l, the model is, nevertheless, capable of producing useful limits
for surface deposition fluxes for a range of the species encountered in

photochemical applications.



CHAPTER 7

TREATMENT OF POINT AND AREA SOURCE EMISSIONS

7.1 Introduction

A primary determinant of pollutant concentration levels within an
urban environment is the emission of contaminant materials into the
atmosphere. These emissions, which can be produced from a variety of
different activities, enter the airshed model either through the boun-
dary conditions or as source terms in the comservation equations. This
chapter describes the procedures used to allocate emissions into the
appropriate computational cells. Particular attention is given to: the
mode of material injection, effective release height, near source chem-
istry and the influence of turbulent diffusion. The issues which need
fo be considered when compiling a comprehensive emission inventory for

a specific region are discussed in Chapter 13.

7.2 Point and Area Source Emissions

Despite the diversity of different source types, pollutants and
modes of material discharge, most emissions can be considered to be
released from either point locations or areal regions. Point sources,
by definition, need to be treated as direct inputs to the species con-
tinuity equations in much the same manner as the chemical reaction
terms, If a point source emits a typical species at the rate Ep(gp,t)
from the discharge point §P, then the contribution to the rate of con-

centration change at x is given by

o s{x,t) = Ep(gp,t)a( ) (7.1)

XX,
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) is given by

where OL(x,xF
1 ; X =X
SRS
(x,x =
o ) (7.2)
0 ;3 X =X
2SS

Area sources are typically located at the ground and as a result they
enter the airshed model through the boundary conditions. For the prob-
lem under consideration the flux balance at the surface results in an

expression of the form

vgc - K o= Ea(EJt) (7.3

where vg is the deposition velocity of species c, Kzz the turbulent
diffusivity and Ea(th) is the emission flux at the ground. In a typi-
cal urban airshed there are often a very large number of point sources
within an area defined by a typical computational cell, Rather than
considering each source separately, a common practice is to aggregate
all the ground level point sources within éach cell and develop a com-—
parable source term. If there are n ground level point sources located
within an area, A, then the equivalent, uniformly distributed flux is

given by

n
B, (x,t) = EEP(%,t) s x, € A (7.4)

Most airshed models cannot resolve spatial scales smaller than
the size of an individual computational cell. Because of this, point

and area emissions are often treated as volume source terms. In order
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to determine the incremental contribution from emissions into a partic-
ular cell consider the one shown in Figure 7.1, which is of arbitrary
base area A and uniform height h(t). Given the mass emission rate from
either a point source Ep(zp,t) OT an area source Ea(gjt),the

corresponding cell mass concentrations Qp(t) and Qa(t) are of the form

E (x ,t)
Q,(t) = PP (7.5)

and

(7.6)

To be useful in comparisons against ambient air quality standards the
expressions (7.5 — 7.6) need to be converted to a system of concentra-
tion units expressed in terms of parts per million by volume. This is
accomplished by assuming that all species can be described by the ideal
gas laws. Under these conditions the volume occupied by one mole of an
ideal gas is given by RT/P where R is the Universal gas constant, T the
absolute temperature in OK, and P the pressure in standard atmospheres.
If M is the molecular weight of species k then the conversion is given

by

Concentration (ppmv) = ﬁ% Concentration (ugm/mB) (7.7)

. . . -1 .
The source conversion factor, S, expressed in units of ppm sec 1s

then given by

S = %% 10° Q(Kgm/m3—s) (7.8)
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Point and Area Source Representation
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For the most common case of a regular cell of volume V and source

emissions Ep and E, the above expressions reduce to:

9

_RT 10" E (x_,t) ‘
Sp(t) =¥y PP (7.9
s (¢) = RI 10° E_(x,t) (7.10)
alt) = 3p h(yy 2 -

In order to illustrate an application of the above formulae consider an
area source with an emission flux density of Ea(t) =1 Kgm/mz—s and a
point release of Ep(t) = 1 Rgm/s. If the ambient conditions are T = 25
°c =298 °%K, P = 1 atm and R = 8.314 Joule/gm-mole-°K (RT/P = 0.02450),
then the source conversion factors for a unit cell volume and height
can be readily calculated from (7.9) and (7.10). Some typical results

for a range of different species are shown in Table 7.1.

Both concentration conversion formulae require a knowledge of the
molecular weights. This does not pose a problem for most species; how-
ever,a difficulty arises when treating hydrocarbons because there are
hundreds of them present in a typical urban atmosphere. Since it is
not practical to consider the reactions of each individual hydrocarbon,
the most common approach is to treat the chemistry of a series of
lumped classes. A typical grouping could be aldehydes, olefins, aromat-—

ics, alkanes and other non-reactive species.
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TABLE 7.1
(2)

Conversion Factors for Point and Area Sources

MOLECULAR ®) SOURCE EMISSTON (S
SPECIES WEIGHT CONVERSION FACTORS FACTORS
) (gm) (R / ppm) (S5V, S5 )
m
co 28 1143 8.75 x 10°
NO 30 1224 8.17 x 10°
No, 46 1878 5.33 x 10°
50, 64 2612 3.83 x 10°
50, 80 3625 3.06 % 10°
cu, 16 653 15.31 x 10°
C,Hg 44 1796 5.57 x 10°
HCHO 30 1224 8.17 x 10°
NH, 17 694 14.41 % 10°

(a) Ambient conditions p = 1 atm and T = 298°K

(b) Example calculation, 1.5 ppmV of nitric oxide (NO) = 1.5 x 1224 =
1836 ugm/m3

(c) The conversion factors are based on Ea =1 Kgm/mz—sec and
Ep = 1 Kgm/sec. As an example consider a large point source
emitting 0.1 Kgm/sec ( = 10 tons/day) of nitric oxide (NO) into
a grid cell of dimension 5000 x 5000 x 30 m, then

9 5
RT 10 _ 8.17x107x0.1 -1 14x10—4 ppm . ppb

S, (0 =35 v E,(NO) = Sgooxsoooxzo. T N sec ~  min
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In the present study the i-th hydrocarbon class average molecular

weight, MWi, is determined from

n
= B
k=1
MW. = (7.11)

n
s E /
LR

where Ek and Mk are the emissions and molecular weight of species k in

the i-th class.

7.3 Effective Release Height for Emissions

In the previous section no consideration was given to either the
physical stack height or the buoyant rise of hot exhaust gases when
locating the effective discharge point, Ep' Within the airshed model
the actual height, H, for emission release is considered to be the sum
of the stack elevation, hs’ and the plume rise, hp' Depending upon the
value of H and the size of the first computational cell, Az, the emis-
sions can be treated as either ground level or elevated releases.
Clearly when hs > Az the emissions need to be considered as elevated
point sources. When hs < Az the distinction between ground level and
elevated sources, and their mode of numerical treatment, is no longer
clear cut. As a result it is necessary to establish selection criteria
which can be used to distinguish between the two cases. One approach
for creating such a division is shown in Figure 7.2 and illustrates the
need to address two basic issues: the computational cost and the magni-

tude of the concentration increment.
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The critical problem, in either case, is to determine if the plume
rise above the stack top 1is greater than Az. Since most of the
exhaust plumes encountered in an urban environment are dominated by
buoyancy rather than momentum, an initial selection can be made on the

basis of the magnitude of the buovancy flux, ¥, emitted by the source.

This flux is defined as

F = o (7.12)
TTCPDTS

where QH is the heat output from the source, TS the stack gas tempera-
ture, Cp and p the specific heat and density of the exhaust gases. In
the present model the source emissions are treated as ground level
releases if the effluent buoyancy is below a minimum value, Fmin'
Assigning a lower value effectively reduces the the number of sources
treated as individual point releases. This latter factor is quite
important as an extensive set of calculations must be performed in
order to correctly account for the material dispersion from each
source. In practice the exact value of the cutoff depends on the
number of sources and the magnitude of their emissions. Chapter 13

discusses the choice of Fm.

in for an urban airshed.

When the source buoyancy exceeds Frin the next step is to deter-
mine if the equilibrium height of the effluent plume is above the top
of the first computational cell. If the plume rise plus the stack
height exceeds Az then the source is treated as an elevated point
source. When hS + hp < Az the point source is added to the ground

level flux term in (7.3). Clearly a crucial element of the selection
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process is the determination of hy and this is the subject of the next

section.

7.4 Plume Rise and Effective Stack Height

Characterization of the plume rise above the stack top 1in terms
of the exhaust gas properties and the ambient atmospheric state 1is a
complex problem. A recent review by Briggs (1975) indicates that no
single formula adequately predicts plume rise for the range of commonly
encountered meteorological conditions; indeed, the predictions of dif-
ferent formulations can vary by factors of 2 to 10. Given such a large
range of uncertainty it 1s natural to ask the question: what procedures
can be used in the airshed model to predict the plume rise from indi-
vidual point sources? The objective of this section is to present the

formulae embedded in the airshed model,

As might be expected, there is an extensive literature on plume
rise modeling; however, it is beyond the scope of this study to con-
sider the details of the different formulations. This background infor-
mation is comprehensively reviewed in the works of Briggs (1969,1975),
Fischer et al. (1979), Fabrick et al. (1977) and Tesche et al. (1976).
An examination of this literature indicates that the approaches can be
broadly classified into three basic categories. The most detailed
involves solving the coupled comnservation equations of mass, momentum,
energy and species. This method is generally not used in airshed
models because of the prohibitive cost of the numerical solution. An
alternative approach, introduced by Morten et al. (1956), is to con-

sider the integrated form of the conservation equations. This method
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involves integrating the equationms across a section normal to the plume
trajectory and assuming that all turbulent transport terms vanish at
the plume boundary. Several variations of the general equations for
the integral method are available for different flow geometries and
the ambient conditions. A thorough discussion of the development of
the general equations for a buoyant jet in a density- stratified cross
flow are given by Hirst (1972), Omms (1972), Wright (1977), Schatzmann
(1979), Koh and Brooks (1975), Csanady (1973), Hoult et al. (1969) and

Fischer et al., (1979).

Although there are many plume rise formulae, the ones proposed by
Briggs (1969, 1975) are the most widely employed in practice (CRSTER,

1977). Extensive sets of field observations, dimensional analyses and
theoretical formulations were used by Briggs in developing the plume

models. Near the source h equately predicted using the momentum

conservation equations and a simple entrainment assumption.

For neutral and unstable conditions Briggs developed the following

expression:

Woo 1.6 [F %2113 (7.13;

P

u

where x 1is downwind distance from source (m), and u is the horizontal

wind speed (m/s). The buoyancy flux, in m” 5_3, is defined by

_gdlv (T, - T) (7.14)

wvhere g is the gravitaticnal acceleration (9.8 m s J, & is the stack



230

inside diameter (m), Vg the exhaust gas velocity (m/s), T, is the
ambient air temperaturé (°x), and T_ the stack exhaust gas temperature.
Based on early experimental evidence, Briggs concluded that the final
plume rise, hp, occurred at a downwind distance of ten stack heights.
Later results indicated that the the downwind distance at which the
final plume rise occurred was a function of buoyancy. The distances are

as follows

14 F /8 . F < 55 (7.15)

34 7 215 S F > 55 (7.16)

v

The limiting plume rise predictions as a function of the buoyancy flux

parameter F are shown in Figure 7.3.

Under stable ambient stratificatiom Briggs (1975) indicates that

the plume rise can be described by

1/3

2.6 [F/us] ; for windy conditions (7.17)

5.0 [}?2/:53]1/8 ; for near calm conditions (7.18)

In these expressions s is stability parameter defined in terms of the

vertical potential temperature gradient.

¢ =839 (7.19)
T

When calculating the plume rise hp’ the smaller of the values

estimated by (7.17) and (7.18) should be used. The downwind distance
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to the final plume rise is given by

Xd = Tfu/\/? (7.20)

In some circumstances the appropriate field data will not be available
for direct determination of the stratification parameter; for these
situations s can be approximated using the information presented in

Table 7.2.

7.5 Plume Penetration Into Elevated Stable Layers

In urban environments the surface layer is often capped by an
elevated stable layer. Since the formulae presented in the previous
sections are only valid for conditions of uniform stratification they
provide little guidance in assessing the ability of buoyant plumes to
penetrate into the inversion. This section presents a simple model that
enables the study of plume penetration in an environment composed of a
surface neutral layer below a stable, elevated temperature inversion.

A schematic representation of the problem is shown in Figure 7.4. Note
that for the purposes of the following analysis the inversion is con-

sidered to be deeper than the final plume rise.

As a first approximation consider the classic Morton et al. (1956)
approach to plume rise in which there is no cross flow. If the Bous-
sinesq approximation is invoked then the comservation equatioms for
mass, momentum and buoyancy can be written in the form

d (b%w) = 20bw (7.21)
dz
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TABLE 7.2

Relationship Between Pasquill-Gifford Stability
Classes and Temperature Stratification

AMBIENT TEMPERATURE
GRAD%?NT
8T/3z ( C/100m)

TABILITY
CLASS

POTENTIAL TEMPERATURE*
GRAQ}ENT
36/3z ( C/100m)

lapse rate (0.986 0C/lOOm).

A (extremely unstable) <-1.9 <-0.9

B (moderately unstable) -1.9 to -1.7 -0.9 to -0.7
C (slightly unstable) -1.7 to -1.5 -0.7 to -0.5
D (neutral) -1.5 to -0.5 -0.5 to 0.5
E (slightly stable) ~0.5 to 1.5 0.5 to 2.5
F (moderately stable) >1.5 >2.5
*Calculated by assuming dg - EI-+ I' where T is the adiabatic

7 © dz dz
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T,-T
1
é_(bzwz) b2 (7.22)
dz Ta
. T,-T -
d (b%wg ' ) = blu g dTa (7.23)
dz Ta Ta dz

where a is the entraimment coefficient, w(z) the vertical velocity
component, b(z) the plume radius as a function of elevation z, T and
T1 are the temperatures inside and outside the plume. ( Ta is a refer-
ence temperature, typically the ambient value at the same elevation as
the top of the stack.) In the above formulation the vertical velocity
and temperature have been assumed to be constant across the plume at
any height. This formulation can be easily extended to the more conven-—
tional approaches of Csanady (1972) and Koh and Brooks (1975) in which

NS i -

the profiles are assumed to be Gaussian.
The buoyancy flux in (7.23) is given by

T, - T
F, = bzwg ! (7.24)

T
a

Under neutral conditions d(Fz)/dz is constant and so FZ is equal to F,
the buoyancy flux at the stack exit. Equatioms (7.21) and (7.22) can be
solved to give an expression for the change in buoyancy flux as a func-

tion of elevation and the temperature stratification parameter s, i.e.

dF

N

_ 6o, 9a \1/3_ _1/3 5/3 (7.25)
=-5 (g s F oz |
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Starting at the stack top, where Fz = F, (7.25) can be integrated to
find the elevation at which Fz = 0. This height defines the vertical
extent of the plume rise. Since s=0 for 0 < z <z, the integral can be

written in the form

z

o e

j-dfz = ég-(gg)l/Bs F1/3 JF 25/3 dz (7.26)
5 *10

Where z, is the height of final plume rise. Evaluating the integral

gives

3/8
2
2, =2, [ 1 +-§% 0%2)1/3 1/s€255)2/3 ] (7.27)

1

Which for a typical value of the entrainment coefficient, o = 0.124,

(Briggs, 1975) gives the following approximate expression for z,

3/8
z =Z.|1+ §Z (—E—
e i s 4
Z.
i

)2/3

(7.28)
Considering the finite size of the plume, complete penetration is
likely to occur when z, = 1'3Zi' A similar amnalysis can be performed
for the uniform cross flow case which results in an equilibrium plume

rise of the form

z, = Zi {1.8 + 4 _ (7.29)

A surprising feature of (7.29), also noted by Briggs (1975), is that
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50% penetration (Ze = Z;) requires only 1i/28 of the buoyancy required
for 1007 penetration (ze > zzi). Within the airshed model the plume is

considered to have penetrated the inversion base if
F > 0.3 usZi3 (7.30)

Because of the finite depth of the plume, partial penetration of
elevated inversions probably occurs more often than total penetration.
in either case it is important to have some estimate of the amount of
material injected into the inversion. Manins (1979) presents labora-
tory results and a theoretical model of the conditions under which
plumes can penetrate sharp, elevated temperature inversions. Of partic-
.ular interest is the fact that his model can be used to predict the
fraction of material trapped in the inversion layer and which will be
available for subsequent fumigation. One of the more interesting find-
ings of Manins” work was that so long as the plume remains in the
inversion layer the amount of material trapped per unit downwind dis-—

tance is approximately independent of wind speed.

In many situations the boundary layer temperature structure is
more complicated than the simple two layer system described above.
There are a number of integral plume models which canlbe used to
predict plume dispersion in arbitrarily stratified environments. Some
examples are described in the works of Schatzmann (1979), Omms (1972),
Briggs (1975) and Hirst (1972). Unfortunately none of these models
result in simple analytic expressions and és a result they must be

solved numerically.



238

7.6 Treatment of Elevated Point Sources

Most previous models have either ignored the dispersion of pollu-
tant material from elevated point sources (MacCracken et al., 1978) or
treated them in a highly simplified manner (Reynolds et al, 1973).
This is unfortunate since the contribution to both local and more dis-—
tant pollutant levels can be quite significant. For example when the
effective stack height is below the top of the mixed layer, the
effluents can be rapidly downmixed within a short distance of the
source. If the emissions are injected into the inversion the plume
material can remain aloft for many hours, effectively isolated from the
ground, until convective mixing erodes the stable layer. The point at
which the fumigation occurs may be a considerable distance downwind

from the source. This phenomenon was discussed in Chapter 5.

The most common allocation scheme for elevated point sources 1is
to add the emissions from the source into the grid cell at the effec-
tive stack height. If all the material is injected into omne cell the
near source air quality impact can be overestimated. An even more
serious drawback with this apprecach is that an isolated source can
induce numerical dispersion errors that in turn can produce severe
instabilities during numerical sclution of the chemical kinetics.
These errors can become even more severe when multiple sources are con-—
sidered because the dispersive waves from each release can interact
and be amplified (Figure 7.5). Some of these computational difficul-
ties can be overcome by using the solution procedures described in

Chapter 10.
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In an earlier effort to avoid some of these problems, Reynolds et
al. (1973) allocated the emissions to downwind computational cells on
the basis of some Gaussian plume dispersion estimates. During the day-
time the plume was comnsidered to be well mixed in the vertical direc-
tion within a horizontal distance of two grid cells downwind from the
source. Perhaps the most critical limitation of their procedure was

that emissions injected above the top of the mixed layer were ignored.

The approach adopted in this study is to disperse the emissions
downwind, taking into account the actual vertical and lateral spread of
the plume as well as whether the effective stack height is above or
below the top of the mixed layer. Lateral and vertical dimemnsions of
the plume are obtained by assuming a Gaussian profile in each direc-

tion. In each direction the plume halfwidth is assumed to be 20

which includes 95% of the plume mass. The dispersion coefficients Oy

and o, are functions of solar radiation, cloud cover, wind speed and
surface roughness, The plume is assumed to extend downwind for a dis-
tance uAt where At is the averaging time of the wind data, If the vert-
ical thickness of the plume, 402, exceeds the mixed layer depth, the
vertical thickness is taken to be the mixing height. Over the averag-
ing time of the wind data, the plume is assumed to be uniformly mixed
and to be essentially conical (Figure 7.6). With this assumption the
fraction, Fijk’ of the elliptical cone volume that is within a given
downwind grid cell, (i,j,k), can be used to calculate the magnitude of
the source countribution

= P F.. (7.31)

S..
13k Mx Ay Lz 13k
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Figure 7.7(a) displays the concentration distribution resulting
from a single source using this dispersion procedure. The upwind nega-
tive concentratioms are much smaller than those resulting from the sin-
gle cell source injection. Figure 7.7(b) shows the concentration dis-
tribution resulting from the same computational procedure but with two
sources. The upwind dispersion errors, im both cases, are substan-

tially less than those shown in Figure 7.5.
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Same as Figure 7.6 except that the source injection
is performed using the algorithm described in the text
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7.7 Plume Dispersion Parameters

A key element of the source allocation procedure introduced in the
previous section was the characterization of the plume growth in terms
of the dispersion parsmeters Oy and 0, While there is an extensive
literature on procedures for estimating the coefficients, most of the
commonly adopted schemes utilize the formulation presented in Turner
(1970). Unfortunately the Turner Workbook is based on a limited set of
field data and, more importantly, it does not accurately describe
dispersion under unstable conditions. (Hanna et al., 1977; Gifford,
1976;and Pasquill, 1975, 1976). The recent work of Willis and Dear-
dorff (1976, 1978), Lewellen and Teske (1975) and Lamb (1978, 1979)
indicates that under convectively driven conditions both the mixed
layer depth and the convective velocity scale have a significant impact
on pollutant diffusion from elevated sources. Neither of these vari-
ables are included in typical Gaussian plume calculations. The objec-
tive of this section 1s to present an algorithm for predicting the
plume growth in terms of readily available or estimated meteorological
information. The procedure supplements the material presented in
Chapter &4 and is partly based on the measurements and literature

results assembled by Irwin (1979).

When describing the plume geometry it is important to ensure that
the averaging times of the turbulence statistics and requirements for
the concentration predictions are comsistent. The basic problem is
illustrated in Figure 7.8. As seen by a étationary observer, the mean

concentration is influenced by meandering of the plume during the
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experiment. Taylor (1921) addressed this issue and proposed a model
for the average plume dimensions expressed in terms of the motion of
single particles released from the point source. At a particular
instant, however, the plume outline is defined by the trajectories of
two particles released simultaneously by the source. The instantaneous
plume width is described by the particle separation and the meander by
the position of their center of mass. The need for distinguishing
between the two cases becomes apparent when it is recognized that the
plume chemistry is controlled by the instantaneous values and the
observed ground level concentration by the average profile. Some ini-
tial ideas on the relationship between averaging times and particle
statistics for different observed wind velocity spectra are presented
in Sheih (1980). Further, more definitive work will require field data
from a wider range of conditions. For the purposes of the present study
it has been assumed that the averaging times for the dispersiom coeffi-

cients are comparable with those of the meteorological data.

In the atmosphere cy and , reflect the influence of the different
physical phenomena acting on the plume. If the assumption is made that
the various processes are additive (Pasquill, 1975) then the total

dispersion in each direction can be represented by

2 2 2 2

Gy = %) + % (y) + % (v) (7.32)
2 2 2

o, = Ga(z) + Ob(z) (7.33)

where the subscript a refers to the contribution from atmospheric
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turbulence, b the fraction induced by the inherent buoyancy of the
plume and s the additional cross wind spread arising from vertical
wind shear. Since the primary purpose of the source allocation pro-
cedure is to maintain the plume integrity only until it has grown to
the size of a typical computational cell,the effect on lateral disper-—
sion from changes in the wind direction and speed with elevation can be
ignored. Most of the research work and field investigations have been

directed at formulating the contribution from atmospheric turbulence.

Under suitable assumptions on atmospheric stationarity and homo-
geneity Taylor (1921) showed that the diffusion parameters can be

written in the general form

(7.34)

qQ
[WY R L)
I
[N~
%
N
‘ﬁ,,_]
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Ry (g) d&dt

2 _ 2
a2y ° 2w fj R, (&) didt (7.35)

00

.
o

where T is the diffusion time and R .z are the Lagrangian auto-
correlations associated with the wind fluctuations v“, w” in the y and
z directions. Close to the source R(£) = 1. 1In the limits of long dif-
fusion times it is highly likely that the velocity fluctuations are
unéorrelated and as a result R(g) = 0. For intermediate times measure-

ment difficulties complicate characterization of the functional form

of R(g). In an effort to overcome some of the practical difficulties,
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Pasquill (1971) suggested an alternative definitio
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essential features of the Taylor formulation but which was more amen-

able to parameterization in terms of readily determined Eulerian quan-
tities. In its most gemeral form, as adeopted by Draxler (1976), Hanna
et al. (1977), and Irwin (1979), the Pasquill representation results in

dispersion coefficients of the form

Ga(y) = OV(E) t FY(E) (7.36)

g =0 P 7.

a(z) GB) T F(B) (7.37)

where the standard deviation of the wind fluctuations Ov and 9 and

Fy , are universal functions of a set of parameters P which specify the
3

characteristics of the atmospheric boundary layer over a range of sta-

bility conditions.

The variables which comprise P were introduced in Chapter 4 and
include the frictiom velocity u,, the Monin-Obukhov length L, the
Coriolis parameter f, the mixed layer depth Zi’ the convective velocity
scale w,, the surface roughness zg and the height of the pollutant
release above the ground z,i.e., P = { z, Zi’ Ugs Wys Zgo L, f£}.
Details of the procedures used to determine these variables are dis-

cussed in Chapter 4.
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For lateral dispersion, the standard deviation of the horizontal wind

fluctuations can be written in the form

1
Z, § Z.
l.78uJ_[ 1+ 0.059 <_ _1>} .o (7.38)
x L L
o=
v
Z,
l.78u* ; 7%.i 0 (7.39)

Irwin (1979) developed (7.38) by combining the results of Nieuwstadt and
van Duuren (1979), Deardorff and Willis (1975), and Draxler (1976). For

neutral and stable conditionstjv is based on the calculations described

in Binkowski (1979).

Normally Monin-Obukhov similarity is valid only for z/L < -2; how-
ever, for convective conditions mixed-layer scaling can be applied
throughout the whole boundary layer (Panofsky et al.,1977; Nieuwstadt,

1980). Using these results Irwin (1979) proposed the following forms

for F .
y
1
Z.\13 Z.
1 1 _ 2.5ux i L1 .
P 1 T, 7, [1“)-0013(‘ L)] ;<0 (7.40)
1+<i>? * *
T.
1
F =<
y.
(7.41)
L 1 1 Z.

1 = 1.001
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An examination of (7.38-7.41) indicates that they have the same limit-
ing behaviour predicted by the Taylor theory i.e. o, % t for t > 0 and
g, @ ¥Vt for t -+ o« . Another interesting feature of the model is that

there is no functional dependence on release height.

In contrast, the standard deviation of the vertical yelocity fluc-
tuations are closely related to the height of the pollutant release
above the surface., The reason for this is that under unstable condi-
tions the appropriate similarity variables are the convective velocity
W, and the mixed layer height Z; (Willis and Deardorff, 1976). Using
these variables a wide range of field and laboratory measurements can

be described by a universal function of the form
o, = W*G(Z/Zi) (7.42)

Irwin (1979) has assembled a number of different data sets which
characterize G(z/Zi). His results, shown in Figure 7.9, have been

incorporated into the airshed model.

During neutral and stably stratified conditions the formulation

developed by Binkowski (1979) can be used
1

c(ZY_ E Y
%n L L 3

>0 - (7.43)

6 (§)= 1+4.7(%) (7 .44)
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(After Irwin, 1979)



252

The reduced frequency fm (Busch, 1973) at which the vertical velocity

spectrum has its peak is given by

< 2 (7.45)

e
|

0.4 [1 +3.9(%)- o.25(%)2} ;

> 2 (7.46)

N

0.4 [6.78 +2.39 (% - 2) il .

Once the standard deviatioms of the wind velocity fluctuations
have been established the mext step is to complete parameterization of
the vertical dispersion coefficients by specifying F_. Some field and
1abofatory results for unstable conditions are shown in Figure 7.10,
where the datahave been plotted as a normalized function of the convec-
tive time scale Zi/w*. From an inspection of these graphs it is
apparent that there are twe different dispersion regimes, one for
discharges above 0.12i and the other for surface releases. Lamb (1979)
has shown that locus of maximum concentration of a nom—buoyant elevated
plume (zS > O.IZi) follows a descending path that intercepts the ground
at a downwind distance x "V ZZngw*. For a surface source the locus of
the maximum concentration ascends beginning at a distance of approxi-
mately x = Zigjw*. The important features of the concentration field
can be reproduced by the Gaussian plume model if the actual source
elevation is replaced by a "virtual source height" He(Lamb, 1979). At
present there are, unfortunately, no simple analytic expressions which
describe the variation in Fz or He as a function of release height and

stability. For the present study the data shown in Figure 7.10 are
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employed directly in combination with (7.42). Between neutral condi-

tions and ~Z./L less than 10 an interpolation formula due to Irwin

(1979) is used.

Draxler (1976) developed the following results for neutral and

stable conditions,

(' 1
1+0.9 <—5->%' Pz (7.47)
: T
0
Fo= <
1
08 ; z > 50m (7.48)
. ]
Kl + 0.945 (TO >

The field data which formed the basis of (7.47-7.48) are shown in Fig-

ure 7.11. Both expressions require specification of the characteristic
time Tg- While an initial estimate of 50 seconds was given by Draxler,

Irwin (1979) proposed the following functioms after am analysis of

additional field experiments and laboratory studies

50 3 z < 50m
TO(S) = 1.52 - 25 ; 50 < z < 150m (7.49)
200 3 z > 150m

Even though most of the data examined by Irwinwere for near neutral
conditions the results are likely to have wider applicability because

turbulence levels during stable conditions are relatively low.

So far in the discussion the plumes have been considered to be at
the same temperature as the enviromment. If the source effluent is hot

then the dispersion is influenced by both the ambient turbulence and



255

the buoyancy induced entrainment. Unfortunately there are few published
studies which assess the relative importance of each process. As a
result most descriptions of the source induced dispersion are based

on theoretical formulations. Close to the stack the Taylor entrainment
hypothesis predicts a linear relationship between the plume radius and
the height of ascent. This is partially supported by the data reported
in Briggs (1969) which indicate that the vertical spread is comparable
to plume rise hp' Pasquill (1975,1976) used this result to develop an
estimate of the dispersion caused by the plume buoyancy. The Pasquill
model assumes that the concentration distribution, across any cross
section, is uniform. When modified for equivalent Gaussian profiles,
the thermal dispersion coefficients utilized in the airshed model are

given by
O, oy =—2= 20.3h_ (7.50)

As in all the previous formulations there is a clear need for addi-
tional field and laboratory data which can be used to test different
models over a wide range of atmospheric conditions. This lack of suit-
able verification information considerably hampers the development of
more refined descriptions of the dispersion of buoyant and passive

exhaust gases.
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7.8 Near Source Plume Chemistry

The combustion products from large point sources are rich in
nitrogen oxides and typically have low concentrations of reactive
hydrocarbons. As a result the near source plume chemistry is dominated

by the following reactions.

k) 3
NO2 + hv =-=—> N0 + 0(°P) (7.51)
3 Ky
o(’p) + 0, +M —=> o3 + M (7.52)
kq
0, + NO -—> NO, + O, (7.53)

Once the plume has grown to the size of a typical computational cell

the full airshed model reaction mechanism, with its hydrocarbon and

radical interactions, is more appropriate. The purpose of this section

is to present a simple model which can be used to estimate the fraction of

nitric oxide (NO) which is converted to nitrogen dioxide (NOZ) during

the initial phase of plume dispersion.

Given a background ozone concentration of 0.04 ppm a simple calcu-
lation, using the rate constant data published in Hampson and Garvin
(1977), predicts a typical NO half life of a few seconds. This calcu-
lation assumes that every available NO molecule in the plume encounters
an ozone molecule. In reality the background ozone must diffuse into
the NO rich plume. Because the chemical kinetics are so fast, relative

to the characteristic mixing times, the overall conversion rates are
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limited by the entrainment processes. There have been a number of
theoretical studies (Kewley, 1978; Shu et al., 1978; White,
1979) as well as field measurements (White, 1977 and Hegg et al., 1977)

which support this hypothesis for the reaction system (7.51 - 7.53).

At night the dominant reaction is (7.53); however, during daylight

hours when kl > 0, an equilibrium is established amongst NO, N02, and

O3 which depends on the sunlight intemsity. The NO2 concentration lev-

els are given by the photostationary approximation

No. = K3NO 0g (7.54)
2 k
1
An additional source of NO2 is the thermal conversiom process
ky,
NO + NO + 0, —> ZNO, (7.55)

In this reaction the NO2 formation is proportional to (NO)2 and, as a

result, (7.55) is only significant when the NO concentration levels are
high. This is the ratiomale for omitting the step in most photochemi-
cal reaction mechanisms. There are some circumstances, however, where
the thermal oxidation can be important and these conditioms are dis-

cussed in Section 7.9.

Ignoring, for the present, the NO2 conversion from reaction (7.55),

additional constraints are imposed on the NO-NO system because of

27%
the fact that NO2 + O3 + 0(3P) and NO + NO2 are stoichiometric invari-
ants. If surface removal processes are unimportant and the plume is

considered to be well mixed across a transverse section, then the

nitrogen and excess oxygen balances require that
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Nitrogen:

No_(t) = NO,{t) + NO(t) = D(E)NO_(0) + [1 - D(t)]NOXb (7.56)

Excess Oxygen (Ignoring O(3P) bE

b

b
Ox(t) = NOZ(t) + 03(t) = D(t)[NOZ(O) + 03(0)] + [1 - D()I(NO,” + 0, )

2 3
(7.57)

In these expressions D(t) refers to the plume dilution at time t, and

NOX(O) to the stack concentrations and the superscript "b" to the back-

ground values. The dilution can be defined in terms of the change in

the plume cross sectioned area as a function of time. If the initial

transverse area is AO and is A(t) at some later time t, then D(t) =

AO/A(t). There is a simple relation between the dilution and the growth

of a cross sectional segment of unit thickness; this expression is

1 dA(t) _ 1 dp(v)

A(t) dt D(t) dt

(7.58)

In addition to the dilution D(t), the change in cross section can be

expressed in terms of the dispersion coefficients, Gy and g,

1oaaw) _ 1 499, (7.50)
A(t) dt . g dt :
v z
If the functional forms given by (7.36 - 7.37) are substituted into
(7.59) then the dilution is given by
dF o] dF¥
1 dA(r) _ O_w [ t z:| v t yj|
A(y “de o |_F2<Ti) M T o Fy(Ti) T (7.60)
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When using expressions of the form (7.59 - 7.60) it is important to
ensure that the dispersion parameters describe the instantaneous plume
profile and mot the time averaged envelope (White, 1977). The reason
for this is that the meandering has no effect on the plume chemistry.
The large scale fluctuations in wind direction do, however, influence

the time averaged concentrations.

Since the ozone comcentration in the stack exhaust gases is usu-

ally negligible, (7.57) can be written in the form

O,),(t) =b - NOz(t) (7.61)
where
.~ b b
b = D(t)NOZ(O) + [1 ~ D(t)](l\aO2 + O3 ) (7.62)
and the NO concentratiom is given by (7.56)
NO(t) = a ~ NOZ(t) (7.63)
where
a = D(INO_(0) + [1 - D(t) N0, (7.64)

Combining (7.54, 7.61-7.64) produces a quadratic expression for NOz(t),

the only physically realistic solution of which is given by

k

k .
NOZ(t) = % (a+b+ —1) - \/(a+b+ —1)2 - 4ab (7.65)
k3 k3

The variables a and b can be calculated from measurements of
NO/NOx in the stack exhaust, the dilution and the background concentra-
tions of NO, NO2 and 03. Given the rate constant ratio kl/kB the

downwind NO2 concentration within the plume <can be readily evaluated.
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Some of the necessary corrections for the effects of turbulent fluctu-
ations and concentration inhomogeneities are discussed in Shu et al.
(1978) and White (1979). A variety of other methods for estimating
short—term N02 impacts are reviewed in Cole and Summerhays (1979) and
Peters and Richards (1977). One advantage of the formulation presented
in this section is that it can be used in conjunction with conventional

Gaussian plume models.
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7.9 An Examination of the Contribution of Thermal NO Oxidation

ct
o

to the Formation gﬁ_ﬂgz.

When nitrogen oxides (NOX) are reported in source inventories they
are frequently expressed in terms of equivalent emissions of nitrogen
dioxide (NOZ) even though the exhaust NOX is composed primarily of
nitric oxide (NO). TUnless the imnitial NOZ/NOX ratio is specified from
instack measurements it is necessary to establish appropriate fractioms

for reconstructing the actual emission levels of NO and NO Depending

9°
on the source, and the characteristics of its combustion process, the
fraction can vary from approximately 1 to 10%Z. In additiom to the NO2
formed during combustion, some small quantities can be formed in the

exhaust gases by the third order reaction

k

NO + NC + o2 -é—> 2No2 (7.66)

This reaction step is normally ignored in photochemical reaction
mechanisms because of the low ambient levels of nitric oxide. The
objective of this section 1is to present a very simple model which can
be used to estimate the fractionm of NO which is converted to NO2 in the
vicinity of the source. The intent is not to add an additional reac-—

tion step to the airshed model chemistry but rather to develop a simple

approach for augmenting the emission inventory NOZ/NOX ratio.

If the plume is considered to be well mixed across each transverse

section then the nitric oxide (NO) decay rate is given by

1 dp(t)
4B~ gk (MO X0, + — — (o - NoP) (7.67)

dt D(t) dt



N
(o))
(9]

where D(t) is the plume dilution as defined in Section 7.8 and NOb is

the background concentration of nitric oxide. The nitrogen mass con-

straint enables the direct calculation of NO,. from

2
N0,(t) = D(E)NO_(0) + [1 - D(£)INO.° - No(t) (7.68)
In (7.67) the second order reaction rate comstant, in ppm—z-min_l
units, is of the form (Baulch et al.,1978)
1.066x107°
k,(T) = ="=7="—= exp(530/T) (7.69)
4 T2

Even though the above expressions are straightforward, the NO
concentration dynamics downwind from the stack are not immediately
obvious. While entrainment of cool ambient air into the plume causes an
increase in the magnitude of k4(T) (Figure 7.12), the plume dilution
also results in a reduction of NO., This interplay between cooling and
dilution can be described by integrating the species rate equation. If

the background contribution in (7,67) is ignored then the NO concentra-

tion decay is given by

0) D
No(t) = Noto) ple) (7.70)

t
1+ 2No(01[ k4(T){D(t)02 + [1 - D(t)]Ozb}D(t) dt
0
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Within the plume, the oxygen and temperature distributions are given by

o b b
02(L) =0 + D(t)[OZ(O) - 02 ]

5 {(7.71)

T(t) = ™ + D(£)[T(0) - TP] (7.72)

While details of near source dilution characteristics can be found in

Fischer et al. (1979), an approximate form was adopted in this study
D(t) = exp[-0.15t] :t < 30 s (7.73)

Given the initial and background conditions for NOX, T and O2 the sys-—
tem of equations (7.67 - 7.73) can be solved to give the conversion
fractions for short travel times. Figure 7.13 presents the results of

one such calculation where the initial NOZ(O)/NOX ratio was 5.0%,

02(0) = 3% = 30000 ppmV, and the instack NO was varied from 200 to 2000

the chemistry was included indicates that between 2 and 127 of the
increase in NO2 concentration at any travel time can be explained by
thermal oxidation. Two conclusions are apparent from this investigation.
The first is that, close to the source, the reaction step can be sig-
nificant, which in turn implies that more attention needs to be given to
characterizing the stack exhaust gas concentration and temperature
distributions when assembling emission inventory information. Since the
effects of thermal oxidation are minimal when the dilution is high, there
is no need to include the reaction step (7.66) in the airshed model.

The incremental conversion can be incorporated by simply increasing the

initial NOZ/NOX emission inventory ratio.
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7.10 Conclusions

This chapter has described how both point and area source emis-
sions are treated in the airshed model. Of particular interest is an
improved method for allocating elevated emissions discharges into a
three-dimensional computational grid. When coupled with suitable
selection criteria that identify whether a particular source should be
treated as an elevated release, the procedure significantly reduces the
numerical dispersion errors associated with conventional allocation
schemes. Some preliminary work on the treatment of plume rise in a non
uniformly stratified enviromment resulted in a simple criterion that
establishes whether a plume can penetrate an elevated temperature
inversion. In addition to formulating the plume rise models some con-
sideration was given to the characteristics of the near source chemis-
try and, in particular, the role of thermal oxidation of nitric oxide

to N02.

There is a critical need for more field measurements which can be

used to verify different models of plume dispersion, trapping and subse-

quent fumigationm.,
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CHAPTER 8

PRACTICAL IMPLEMENTATION OF A PHOTOCHEMICAL
REACTION MECHANISM WITHIN AN ATIRSHED MODEL

8.1 Introduction

‘"Photochemical air pollution is formed as a result of a complex
interaction between sunlight, meteorology and primary emissions of
nitrogen oxides and reactive hydrocarbons. The development of a
reaction mechanism that accurately describes the atmospheric chemistry
and which, at the same time, is computatiomally tractable is a complex
undertaking. The task is complicated by the need to maintain a balance
between the level of chemical detail and minimizing, for numerical
reasons, the number of species and reaction pathways. This dilemma is
particularly apparent when considering hydrocarbon chemistry. 1In a
typical urban atmosphere literally hundreds of different hydrocarbons
are present. Under most circumstances it is simply not feasible to
incorporate the reaction steps for each species. As a result two basic
approaches have been developed to characterize the hydrocarbon chemistry:

surrogate and lumped reaction mechanisms.

Surrogate mechanisms are those in which the organic species in a
particular class, e.g. olefins, are represented by one or more members
of that class, e.g. propylene. In general these mechanisms, typified
by Graedel et al. (1976) and Dodge (1977), tend to have a large number
of feaction steps and are not practical in situations where the

meteorological transport model involves more than a few computational
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cells. The second approach tc the problem is to use chemical lumping
in which one or more reactants, of similar structure and reactivity,
are grouped together into a single class. A basic objective is to take
advantage of the common features of the hydrocarbons and free radicals
in order teo minimize the number of species while at the same time
maintaining a high degree of detail for the inorganic reactions. In
the present study the lumped mechanism, developed by Falls and Seinfeld
(1978), has been used. Their mechanism represents the atmospheric
hydrocarbon mixture by six classes: ethylene, other olefins, alkanes,
aromatics, formaldehyde and higher aldehydes. Other examples of lumped
mechanisms are described in Eschenroeder and Martinez (1972), Gelinas
and Skewes—Cox (1975), Hecht and Seinfeld (1972), Hecht et al. (1974),

MacCracken and Sauter (1975) and Whitten et al. (1979).

The basic objective of this chapter is to provide sufficient
information regarding initial conditions, rate constants and stoichio-
metry to allow an independent verification of the Falls and Seinfeld
(1978) mechanism. Their mechanism was selected, for the airshed model,
because it incorporates recent information on rate constants, mechanistic
structure and, in addition, has been successfully validated against
a wide range of smog chamber experiments. Since an extensive analysis
of the chemical basis of the reaction scheme is available in the
cited reference it will not be repeated here. Subsequent sections

of this chapter present the results of a series of tests designed to

examine the numerical properties of the kinetics, the adequacy of some
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psuedo steady state approximations and the mechanism consistency as
evidenced by mass balance checks. While primary emphasis is given to
the Falls and Seinfeld (1978) formulation, much of the discussion in

subsequent sections can be easily applied to other mechanisms.

8.2 Chemical Reaction Source Term and Mechanism Definition

Within the airshed model the ambient chemistry is represented by
the presence of reaction terms, Ri; i=1,2,...,n, in the atmospheric
diffusion equation. This section presents the detailed formulation of
the mathematical form and structure of these terms. Consider a homogen-
eous, isothermal, isobaric system in which n single phase species, Cio
i=1,2,...,n, simultaneously participate in m elementary reaction steps.
Formally, the reaction set can be writtem in terms of linear combinations

of species called complexes (Horn and Jackson, 1972).

n n
:E rji ey 25 pji c; ji=1,2,...,m (8.1)
i:

The reactant and product stoichiometry in reaction step j is defined by

the coefficients r..,p... In general, these coefficients are such that

ji’hii
mass is conserved in each elementary reaction; however, there are cir-
cumstances, to be discussed later, in which this condition must be
relaxed. Note that the sum in (8.1) extends over all n species to allow

for the possibility that a given species can participate in a reaction

step as both a product and a reactant. Equation (8.1) can be written
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in a more compact matrix notation in which {c} is interpreted as a
. : T
concentration vector ¢ = [cl,cz,...,cn] and where the reactant and

product stoichiometric matrices [R], [P] are of dimension m x n.

[R] {c} —= [P] {c} (8.2)

If the rates fj of the m individual reactions are given, the
following set of ordinary differential equations, together with appro-
priate initial conditioms, is a basis for describing the kinetics of the

reaction set embedded in the airshed model (Gavalas, 1968; Aris, 1965).

déz} = {8} = [S]{F} = g(c) (8.3)
where [S8] is the m x n stoichiometric matrix defined by [P] - [R], {F}

is an m x 1 vector of rate functions ﬁr and g(g) can be interpreted as

a non-linear transformation which maps points from R™ into R™. 1In
general the matrix [S] has no special properties, such as symmetry,

band or block structure, except that the number of differential equations

clearly has the upper bound: rank (S) < min (m,n).

For definitional purposes the chemical mechanism embedded in the
airshed model is reproduced in Table 8.1. Each species and its symbolic
representation is shown in Table 8.2. In this latter table the last
column indicates whether the species is described by one of the
following mathematical types: a differential equation (D), a pseudo

steady state approximation (PSSA), a constant (C) or as an uncoupled



TABLE

CHEMICAIL MECHANISM USED WITHIN AIRSHED MODEL

Photolysis of NO2 and basic NO—N02—03 photolytic cycle

NO2 + hv
o(3p) + 0, + @
03 + NO
3
N02 + 0("P)

NO  + 0(P)

8.1

Yo *b *w *M N
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NO + 0P
0, + 0
NOZ + 02
NO + 02
N02

Chemistry of NO, (nitrogen trioxide)
7 3

No, + 0(3py
03 + N02
NO3 + NO

¥y +\1 +0\

Nitrous acid and peroxy nitrous

+m

NO + OH
Photeolysis of HONO
HONO + hv EE
Nitrous acid chemistry
11
HOZ + N02 =
HONO + OH %E
13
NO2 + HO2 -
14
H02N02 >

*These numbers correspond to reactions presented in Tables I-I1I

of Falls and Seinfeld (1978)

NO3

NO3 2

2NO2

acid chemistry

HONO

cH + NO
HONO + O2
NO2 + H20
HOZNO2

H02 + NO2

22

24

18

26

19

20
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TABLE 8.1 (Continued)

Conversion of NO to N02

H02 + NO - NO, + OH
16
RO, + NO - No, + RO
17
RCO3 + NO > N02 + RO2
Nitric acid (HONOZ) formation
NG + OH £§ HONO
2 2
Hydroperoxyl radical formation
Co + OH EB HO2 + CO2
Photolysis of ozone
2
O3 + hv qg O(3P) + O2
Photolysis of formaldehyde
21
HCHO + hv > 2HO2 + CO
22
HCHO + hv > H, + CO
Formaldehyde chemistry
23
HCHO + OH Ny H02 + HZO
Photolysis of higher aldehydes
24
RCHO + hv -> RO, + HO2
Higher aldehyde chemistry
25

RCHO + OH > RCO3

+ CO

+ CO

+ CO

21

52

53

23

25

15

31

32

33

35

36
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TABLE 8.1 (Comtinued)

Olefin chemistry (OLE)

26
C2H4 + OH > RO2
C.H + 0 27 RO + HO
274 > 2 2
2
OLE + OH —>8 RO2
29
OLE + 0 > RO2 + RCO3
OLE  + 04 ?’39. (al) RCHO + (az) HCHO +
(a3) Ho2 + (a4) Ro2 +
(ag) o+ (a6) RO
Alkane chemistry (ALK)
ALK + 0H .%yl RO,
32
ALK + 0 S RO2 + OH
Aromatic chemistry (ARO)
33
ARO + OH g RO2 + RCHO
Alkoxyl radical chemistry
RO 3k (b.) HO, + (1-b_) RO, +
> 1 2 1 2

(bz) HCHO + (b3) RCHO

Photolysis and chemistry of RONO

RONO + hv :_3)5. NO + RO
RO + NO §>6 RONO
RO + N02 9)7, RONO2
38
RO + NO > RCHO + HONO

42

43

37

38

39

40

41

44

46

47

48

Ikl
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TABLE 8.1 (Continued)

Peroxy nitrate chemistry

39
NO2 + RO2 > R02N02
40
NO2 + RO2 - RCHO + HONO2
RO,NO ﬁl NO + RC
2772 2 2
Peroxyacyl nitrate (PAN) chemistry
42
RCO3 + N02 -» PAN
PAN ié

RCO3 + NO

Dinitrogen pentoxide (NZOS) chemistry
44
N02 + NO3 > N205
45
NZOS - NO2 + NO3
H,0 + N,O 18 2 HONO
2 275 - 2
Ozone removal steps
47
O3 + OH N HO2 + 02
48
O3 + HO2 > OH + 202

Ozone wall loss term for smog chamber experiments

O3 ﬁ? wall loss

Hydrogen peroxide production and photolysis

50

HO,  + HO, > H,0, + 0,
51
H,0, + hv 2~ 20H

Recombination Reaction for peroxalkyl radicals

52
RO2 + R02 > 2RO

49

50

54

55

10

11

29

30

27
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TABLE 8.2

Chemical Species Participating in Photochemical Reaction Mechanism

TREATMENT IN

SPECIES® NAME AIRSHED MODELb
1 NO Nitric Oxide D
2 NO2 Nitrogen Dioxide D
3 O3 Ozone D
4 HCHO Formaldehyde D
5 RCHO Higher Aldehydes D
6 OLE Lumped Olefins D
7 ALK Lumped Alkanes D
8 ARO Lumped Aromatics D
9 .C2H4 Ethylene D
i0 co Carbon Monoxide D
11 H202 Hydrogen Peroxide D
12 PAN Peroxyactyl nitrate D
13 HONO Nitrous Acid D
14 RONO Alkyl Nitrite D
15 RNO4 Peroxyalkyl Nitrate D
16 NZOS Dinitrogen Pentoxide PSSA
17 HNO4 Peroxynitric Acid <H02N02) PSSA
18 RCO3 Peroxyacyl Radical PSSA
19 HO, Hydroperoxyl Radical PSSA
20 NO4 Nitrogen Trioxide PsSsa
21 RO, Alkvlperoxv Radical PSSA
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TABLE 8.2 (Continued)

TREATMENT IN

SPECTES® NAME ATRSHED MODEL
22 OH Hydroxyl Radical PSSA
23 RO Alkoxyl Radical PSSA
24 0 Atomic Oxygen PSSA
25 o, Carbon Dioxide P
26 RNO4 Alkyl Nitrate (RONOZ) P
27 HNO3 Nitric Acid (HONOz) P
28 H2 Hydrogen P
29 LOSS Ozone loss term for smog chamber

experiments P
30 .HZO Water C
31 0, Oxygen C
32 M Third Body C
Notes:
a. Species name is restricted to four characters for computational

reasons.

Treatment of species within the airshed model chemistry

D

PSsa

- Differential Equation
- Pseudo Steady State Approximation
- Constant species during one integration step

- Product species ignored in some applicaticns.
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differential form (F). The structure and interrelation among all

elements of the mechanism are shown in Figure 8.1.

The Jacobian matrix of the system of differential equations is
frequently required as a component of numerical solution procedures and
for sensitivity analyses. For the set of equations defined by (8.3) and

(8.4) the Jacobian is given by

3{l} ;
3{c}

_ T 3{F}
= [s] 3{c} (8.4)

A number of species in the mechanism appear only as products and
as a result can be treated as uncoupled differential equations. Parti-
tioning the concentration vector to reflect this division, (8.3) can be

written as

c g (c)
¢ -] < (8.5)

{c} =
Lgp (cc)

O

where the subscripts refer to the coupled (c) and product (p) species.
Since the {cp}can be expressed as functions of‘{cc}, their concentrations
are readily determined for any interval [tO,T] by standard numerical

quadrature procedures by evaluating integrals of the form

T
e, (M} = {e ()} + [ {g (e} de (8.6)

t
0
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8.3 Stoichiometric Coefficients for the Lumped Reactions

Two reactions in the Falls and Seinfeld (1978) mechanism require
specification of stoichiometric coefficients. The first is the lumped
ozone-olefin chemistry which is shown schematically in Figure 8.2 and
can be expressed in the form

30

OLE + O3 — (al)RCHO + (aZ)HCHO + (33)H02

+ (aA)RO2 + (aS)OH + (a6)RO

+ (a7)HCO (8.7)

where the stoichiometric coefficients are given by

a1 = (1 - 0.56)

a, = 0.56

a; = 0.5 ¢ (& + 1) (1-0.58) + p§

a, = 0.5 ¢ (28 + ) (1-0.58) (8.8)
ag = 0.5 £ (1-0.58)

ag = 0.5 en  (1-0.58)

a, = 0.5 en (1-0.58)

where & equals the fraction of olefins with terminal double bonds,

1-¢ the fraction of RCHOO reactions that proceed by collisional
stabilization, £ and n the fractions of RCHOO to [RCHOO]* and [HOCOR]*
respectively. All other splits are assumed to be 50/50 except for the

step



© —> RCHO + [HOCOR] 07 H20 + CO
20% > H co

> 2H0.,
L

where p is 10% (Dodge, 1978). For the purposes of calculating the
stoichiometric coefficient for H02 production, ¢ has been assumed to be
0.1. From a computational point of view, it is desirable to minimize
the number of species. Since the formyl radical (HCO) reacts very

rapidly with oxygen to form hydroperoxyl (HOz), HCO can be eliminated

with the reaction step

HCO + O2 —> H02 + CO (8.9)

Applying this result, together with the interpretation by Dodge (1978)
of the Herron and Huie (1977) ozone-olefin experiments, the stoichio-
metric coefficients can be calculated from ¢ = 0.8, £ = 0.68, n = 0.17,

6 =1, and p = 0.1. Substituting these values into the expressions for

a ..,a6 gives

17

OLE + 0, 39, 0.5 RCHO + 0.5 HCHO + 0.30 HO,

+ 0.31 RO2 + 0.14 0H + 0.03 RO (8.10)

where the HO2 coefficient is derived from a3 + ass i.e.
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a, + a, = [0.58(&4n) (1~0.56) + pd] + [0.5en(1-0.58) = 0.304 (8.11)

The decomposition, reaction with 02, and isomerization of the alkoxyl
and hydro-alkoxyl classes in the airshed mechanismhave been concentrated

in the reaction step

4
RO 34

> (bl)HO2 + (l—bl)RO2 + (bz)HCHO + (b3)RCHO (8.12)

Since the RO lumped species represents a large class of different-sized
radicals and because splits between reaction paths even for specific
radicals are unknown, bl can have a value in the range 0 to 1. For the
present model, the coefficients have been assigned the following values:
bl =1, b, =0.5, and b, = 0.5, so that (8.12) can be written in the

2 3

simpler form

RO —2%5 HO, + 0.5 HCHO + 0.5 RCHO (8.13)

8.4 Specification of the Reaction Rate Constants

Three basic types of reaction rate data are needed to complete the
mechanism kinetics: inorganic, lumped hydrocarbon and photolysis rates.
The determination of individual species reaction rates {F} is a major
area of experimental and theoretical investigation. For dilute chemical
systems, a frequently employed model for correlating experimental data

is the so-called 'mass action law' which is based on an analogy to
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molecular collision (Pratt, 1969). 1In its simplest statement this model

results in a polvnomial expression for the rate, £, of the form
J

—

n
TS 1 e, 31 (8.14)
i=1

1=

where kj is a temperature dependent rate constant given by,

kj(T) = Aj exp [—Bj/T] (8.15)

Expression (8.15) is the Arrhenius equation, the coefficients of which
are derived from measurements of individual reaction rates as a function
of temperature and pressure. The rate data for the inorganic reactions
in the Falls and Seinfeld (1978) are presented in Table 8.3 together with
appropriate literature citatioms. Baulch et al. (1980) have recently
published an evaluated review of kinetic data for atmospheric chemistry.
In some cases there are differences between their recommendation and the
values used in the model evaluation studies described in subsequent
chapters of this study. While future work with the mechanism will
incorporate the new information, Table 8.3 serves as documentation of
the rate constants employed in calculations to date. A discussion of
procedures for developing the rate data for the lumped hyvdrocarbon
reaction is presented in the next section. For more detailed analyses
of the kinetic model (8.14) the reader is referred to Krambeck (1970),

Horn and Jackson (1972) and Bowen (1976).
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TABLE 8.3

Summary of Rate Constants Excluding Photolysis and Lumped Hydrocarbon
Steps

RATE CONSTANTS (ppm-min units)

REACTION VALUE AT 298°x REFERENCES
o(’ry + 0, M -3-03 + M 0‘326 exp(510/T) 2.16x107°7 [1]
T
3 9.24x10° 1
0, +NO - NO, + O2 “——Ef———'exp(—lASO/T) 2.39x10 [1]
3., 4 3 99x106 4
NO, + O(CP) > NO + 0, S 1.34%10 [1]
2 2 T
3.. 5 1.67x10° 3
N0+ 0(°P) 3~ No, S exp(584/T) 3.98x10 (1]
3., 6 1.07 106 3
NO, + O0(’P) > NO seiEeY 3.59%10 1]
2 3 T
7 5.19x10" -2
03 +NO, > NO, +0, T exp(-2450/T) 4.68x10 (1]
Q 2 n 6 /.
8 8.05x10 5 20x10% (2]
NO; + NO > 2NO, T . 70x% 2
9 5.O7xlO6 - 4
NO + OH 3 HONO T 1.70x10 (1]
HO., + NO i HONO + 0, k.. = 0.001 k 1.70 [3]
2 2 > 2 11 : 13
12 2 9lxlO6 3
HONO + OH - NO, + H,0 ‘T 9.77x10 [1]
13 1 73x104 3
NO., + HO - HO.NQ == me e exp(1006/T)  1.70x10 [41]
2 2 279 T
14 15 - 63
H02N02 > HO, + NO, 1.80x10" " exp(-9950/T) 5. [4]
\ 15 3.58x10°
HO, + NO > NO, + OH = 1'20X104 (11
16 3.58x10° 4
RO, + NO > NO, + RO _;37_’”_" 1.20x10 [5]
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TABLE 8.3 (Continued)

RATE CONSTANTS (ppm-min units)

REACTION VALUE AT 298°K REFEREXNCE
17 1.13x10° 3
RCO4 + NO 5 NO,+RO,+C0, =5 — 3.79%10 [6]
6€
18 4.53x10 4
NO., + OH - HONO — 1.52x10" (1]
2 2 T
19 1 3lx105 5
CO + OH 3 HO, + CO, —F—— 4. 40%10° [1]
2 2 T
RO 3& blHOZ 2.OXlO5 2.OXIO5 [71
+b ,HCHO
+b ;RCHO
+(l—b1)R02 .
4.38x%10
R0+ N0 32 rowo ——4%§i~—— 1.47x10% (3]
37 2 19x106 3
RO + NO, 3 RONO SR 7.35x10° [8]
2 2 T
38 b _ 2
RO + NO 3 RCHO+HONO® k,.=0.087 k 6.39%10 [9]
2 38 37
39 1 64x106 3
NO, + RO, 3 R02N02 R 5.50%10 [10]
40 1 64x103
NO., + RO 32 RCHO+HONO, ———F——— 5.50 [10]
2 2 2 T
O.N 41 NO, + RO ame as k 5.68 [5]
R 2 02 —>- 2 2 same s 14 .
6.17x10
RCO, + NO, 42 AN ———55———- 2.07x10° [6]
43 16 -2
PAN 5 RCO5 + NO, 4.77x107 exp(-12516/T) 2.74x10 [6]
6
44 2:20x10 7.39x10° [13]
NO, + NO; > N205 T
N0, 45 NO, + NO, 3.44x1016 exp (=10600/T) 1.22x101 [13]

a
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TABLE 8.3 (Continued)

REACTION

RATE CONSTANTS (ppm-min units)

VALUE AT 298°K

a
REFERENCE

+ N, O ié 2HONO

275

+ OH - HO

50

+ HO > H

52

+ RO > 2RO 2.04x104
—_—e

2

3
2 T
5

6.62x10
2 T

4.85x103

2 T exp (-580/T) 2.32

wall loss 0.0

3.4x10
)05 + 0, ——Er——~5exp(llOO/T)+

5.8x10°

2.8x10 ~

T2

T

4.47x10 7 1.50x10"

1
exp(-1000/T)  7.75x10

3
Xp(58OO/T)[H20}f 8.28x10

2
xp(223/T) 1.45%10

5

[1]

Depends on the
4 equipment

[11]

[12]

w
L.

oy

~— —_—— —
= b~ = e e e e e —
L M= OO o~ U W
R S

n
~—

d)

e)

£)

Hampson and Garvin (1978)

Graham and

Johnston (1978)

Graham, Winer and Pitts (1977)

Graham, Win

Estimate

er and Pirts (1978)

Cox and Roffey (1977)

Baldwin, Barker, Golden and Hendry (1977)
Batt and Rattrav (1979)

Baker and Shaw (1963)

Simonaitis
NASA (1981)
Sander and

and Heicklen (1974)

Watson

Baulch et al. (1980)

Ksy

T3 — = 0.92 for CH k = 0.087 k

Ky tkag

3> 738 37

Wall loss term for modeling smog chamber experiments, k,q depends
on experimental conditions.

Rate constants for reactions 39 and 40 are based on the assumption

that kl6/(k

Determined

=/)
39 T ko) T 2.2, 11.67T

G5 G
from 1.477 x 107° y 10 L7-4FT :%9

Water concentration in ppm, value at 298°X based on 20,000 ppm.
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8.5 Lumped Hydrocarbon Reaction Rate Constants

Most lumped photochemical mechanisms represent atmospheric
hydrocarbon chemistry by reactions of the form

m

|

|
HC., + Xm ~—> Products (8.16)

The step (8.16) involves a reaction between Xm’ typically atomic
oxygen (0), hydroxyl radical (OH) or ozone (03), and the jth hydro-
carbon class. In the case of the Falls and Seinfeld (1978) mechanism
the organics, present in ambient air, are divided into ome of four
classes: alkanes, olefins, aromatics and oxygenated compounds like
aldéhydes. Since each class is composed of many different species the
lumped reaction rate constant, Eﬁm, is composition dependent. This

section describes the procedures used to generate the rate constants

for reactions of the type

{-Olefins + 0 ->

HCl Olefins + OH ~
Olefins + O3 -

{ Aromatics + O -

HC
Aromatics + OH -+ (8.17)

Alkanes + 0 -
HC
Alkanes 4+ 0H ~

HC,, { Aldehydes + OH -~
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The basis for calculating the lumped rates are the kinetic data
and concentrations of individual species in each class. Consider a
typical class, j, which is composed of pj individual species. The mole

—m
weighted lumped rate constant kj is given by

PR = S (8.18)

where o, is the number of moles of species ¢ in class j and kim is the
rate constant for the reaction between ¢ and Xm. The expression (8.18)
is the form adopted for use in calculating the lumped rate constants
either from emissions data or concentration measurements. In order to
evaluate (8.18) an extensive literature search was carried out to
identify the basic kinetic data for individual organic species and their
reaction with 03, OH and 0. The results of this survey are too
voluminous to be presented however, for additional details, the reader is
referred to the rate data contained in Hamﬁson and Garvin (1978),

Atkinson et al. (1978) and Lloyd et al. (1976).

As an illustration of the procedure consider the calculation of
the lumped rates for a typical smog chamber experiment. The composition
of the hydrocarbon mixture for the smog chamber experiment SUR-119J
(Pitts et al., 1976) is shown in Table 8.4. Individual species

concentrations were chosen so that the overall mixture was representative
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TABLE 8.4

Hydrocarbon Composition of Smog Chamber Experiment SUR-119J

Excluding Methane, Acetylene, and Acetone

LUMPED CONCENTRATION
HYDROCARBON
CLASS SPECIES ppbV ppbC
ALKANES Ethane (C2H6) 76.8 154
Propane (C3H8) 17.0 51.0
Isobutane (CAHlO) 0.2 0.8
N-butane 166 664
2,3-Dimethyl Butane (C4H8—(CH3)2) 97.6 586
357.6 1455.8
OLEFINS Ethene (CZH4) 43.2 86.4
43.2 86.4
Propene (C3H6) 10.6 31.8
Trans-2-Butene (C4H8) 0.7 2.8
Cis—-2-Butene (CAHB) 13.0 52.0
2-methyl Butene-2 (C4H7—CH3) 14.8 74.0
39.1 160.6
AROMATICS Benzene (C6H6) 1.6 9.6
Toluene (C6H5—CH3) 16.8 118
Ethyl Benzene (C6H5-CZH5) 6.4 51.2
Meta-xylene (C6H4—(CH3)2) 42 .4 339
Isopropyl Benzene (C6H5—C3H7) 0.4 3.6
n-Propyl Benzene ((C6H4_C3H7>n) 0.1 0.9
Meta-Ethyl Toluene (C6H4—CH3—C2H5) 1.0 9.0
1.6 14.4

1,2,3 Trimethyl Benzene (C6H3—(CH3)3)

~J
(]
("8}

545.7
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TABLE 8.4 (Continued)

LUMPED CONCENTRATION
HYDROCARBON

CLASS SPECIES ppbV ppbC

ALDEHYDES Formaldehyde (HCHO) 38.0 38.0

Acetaldehyde (CH3CHO) 20.0 40.0

Propionaldehyde (C2H5CHO) 3.2 9.6

23.2 49.6

TOTALS FOR MIXTURE 571.4 2336.0
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of the 6-9 AM ambient pollutant burden in the Los Angeles atmosphere.
Species have been grouped into each of the lumped classes with the con-
centration, s expressed both in terms of volume as ppbV and by carbon
atom as ppbC. Tables 8.5-8.7 present the individual species rate data

for reactions with OH, O, and O3 derived from the 1iteraturé survey. Given
this information and (8.18) the rate constants for the lumped reaction

in the Falls and Seinfeld (1978) mechanism are shown in Table 8.8. For
comparison purposes the lumped rate constants based on species emission
data are also presented in the same table. Details of the emissions
inventory and its composition are described in Chapter 13. As a

caution it is important to note that in a smog chamber experiment the more
reactive components in each class are consumed first. Applying a mole
weighted scheme under these circumstances has the effect of underestimat-
ing the reaction rates at the beginning of the experiment and over-
estimating them at the end of a run. This is not a particularly

serious problem in urban modeling application because there is & con-

tinued injection of source material.

As can be seen from the previous exercise, detailed composition
data are required to develop the lumped rate constants. Since most moni-
toring agencies only report total (THC) and non-methane (NMHC) hydro-
carbon concentration levels it is necessary to develop a procedure to
partition the broad groupings into the appropriate lumped class for
establishing initial conditions. One way to do this is to develop

splitting factors from detailed compositional studies and then apply
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TABLE 8.8

Rate Constants for Lumped Hydrocarbon Reaction Steps

- -1
RATE CONSTANTS (ppm 1 min )

Smog Chamber Atmospheric
REACTION STEP Surrogate Conditions in
Hydrocarbon Los Angeles

Mixture SUR-119J 27 June 1974

HCHO + OH %é- H02 + HZO + CO 13890.0 13890.0
RCHO + OH %2— RCO3 26600.0 25680.0
C2H4 + OH %é RO2 11660.0 11660.0
C2H4 + 0 %Z R02 + H02 1219.0 1219.0
OLE + OH %é RO2 86800.0 89142.0
OLE + 0 32- R02 + RCO3 39300.0 22118.0
OLE + 03 22 (al)RCHO + (aZ)HCHO+(a3)H02 0.317 0.136
(a4)R02 + (a5)OH +(a6)RO
ALK + OH 2&- RO2 4700.0 4700.0
ALK + 0 32 RO2 + OH 121.0 99.8
ARO +0H %E ROZ + RCHO 25900.0 16112.0

Variable Stoichiometric Coefficients for OLE + O3 reactions

al = 0.5 a, 0.5 a3

= 0.31 = 0.14 ag

0.30

ac 0.03
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these values to the routine non-methane hydrocarbon measurements. As an
example consider the surrogate mixture in Table 8.4. Given the average

a 5 . .
carbon numbers for each class, Cj’ and the carbon fraction, fj’ in each

class then it is a straightforward task to develop the velume splitting

factors from

f.

—
v, A (8.19)

J

where the average carbon number of class j is given by

2

b

c; (ppbC)
j

C

2= A= (8.20)
J
zz ; (ppbV)
i=1

The process is illustrated in Figure 8.3.

8.6 Photolytic Rate Constants

A key process in the formation of photochemical air pollution is
the photolysis of such species as nitrogen dioxide (NOZ)’ formaldehyde
(HCHO) and nitrous acid (HONO). 1In an urban atmosphere it is difficult
either to measure the rates directly or to use routine monitoring data
as a basis for indirect calculations. This section is devoted to
a discussion of a priori methods for determining the diurnal variation

of the photolysis rate constants.
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LUMPED CARBON
CLASS FRACTION MOLE %
CARBON
NUMBER
ALK 0.623
G » 0.153x(ppbV) 62.3
C.H
25y, 0.
. 837 > 0.020%(ppbV) 8.1
OLE 0.069
A 11 » 0.0168x(ppbV) 6.8
x(ppbC) —— pm
ARO . ‘
0.234 = 0.030x(ppbV) 12.2
7.76
HCH .
0 2 g16 » 0.016x%(ppbV) 6.5
R .
CHO 0.021 » 0.0098x%(ppbV) 4.0
7.14
FIGURE 8.3

Conversion of Total Reactive Hydrocarbon Measurements, Expressed
in ppbC, to an Equivalent Volumetric Concentration (ppbV) of
Lumped Hydrocarbon Species - The Specific Example is for the

Atmospheric Surrogate Smog Chamber Experiment SUR-119J
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For a typical species, A, the photodissociation step 1s commonly
written in the form
k
A+ hv = Products (8.21)

with the forward reaction rate, R, given by

_ dA
R = - 25 = k4] (8.22)

The photolysis rate constant, k, of any pollutant, present in the

atmosphere in small concentrations, is given by

f o[A,T(h) T [0, T(h)] I[A,N(),x] d) (8.23)

[o]

k

where o{X,T(h)] (sz) is the wavelength, A, dependent absorption cross
section for the species at temperature, T, in most applications the
atmospheric temperature is a function of the elevation, h. oA, T(h)] is
the quantum yield for the reaction and I is the actinic irradiance
(photons/cmz—sec) corresponding to an atmospheric state, N, at spatial
location, x, and time, t. N specifies the temporal variation of those
variables which affect the transmission and absorption of solar
radiation in the atmosphere. A typical example is the seasonal varia-

tion of turbidity.

Since the wavelength dependent absorption coefficients and quantum
yields are fixed, the variation of the species rate constant in space

and time depends primarily on the variation of the actinic flux.



Actinic irradiance is the radiometric energy incident on single
molecules and, as conventionally defined, applies to ultraviolet (uv)
wavelengths. This parameter is very difficult to estimate from
customary solar radiation measurements; in particular those made with
broad band 180° pyroheliometers. As a result most photolysis rate
constants are based on theoretical calculations of the solar flux in the
spectral band of interest. Many previous modeling studies employed the
tabulation, by Leighton (1961), of photolysis rates as a function of
zenith angle. His results were based on a radiative transfer calcula-
tion which, by necessity, employed many simplifying assumptioms. The
availability of more sophisticated radiative transfer models and more
recent measurements of the upper atmospheric properties has led to

considerable refinement in the calculation of solar fluxes.

Duewer et al. (1978) used the model of Luther and Gelinas (1976)
as a basis for determining the photodissociation rate constants of the
species NOz, HNOZ, H202, Aldehydes, RN02, NO3, 03. For the present
study the actinic irradiance, as a function of zenith angle, was
obtained from the report by Peterson (1976). The actinic flux at ground
level is shown in Table 8.9 for zenith angles in the range 0°-86° as a
function of wavelength in the spectral band 290-800 nm. Extrapolation
of these values beyond 700 nm were obtained from Schere and Demerjian
(1977). The calculations by Peterson were performed with a modified
version of the program developed by Braslau and Dave (1973 a, b). It is

beyond the scope of this chapter to discuss the details of the
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RANGE (NM)
285 - 295
265 - 305
3C3 - 315
315 -~ 325
325 - 335
325 - 349
345 ~ 355
355 - 365
2S5 - 315
575 - 335
-€5 - 395
355 - 405
4CS - «15
41> - 425
%25 - 43>
425 - 445
445 - 455
455 - 445
&t - &75
475 = 485
%65 -~ 455
4585 - 505
5C5 - SIS
515 - 525
5z5 - 53%
525 - 545
543 -~ 555
555 -
5e5 -
5715 -
SE5 -
565 -
6C3 -
£l5 -
625 -
€25 -
E4S -
€55 -
bty ~
&715 -
EEn -
£5z -
¢ -
71: -
73 -
12> -
Tan -~
T -
Tin -
Tan -
Ty -
Tan =

303

TABLE 8.9

Ground Level Actinic Irradiance as a Function of
Zenith Angle and Wavelength (Photons/cm?-secx107!9)

IENITH ANGLES (DEG)

0.0 10.00 20.00 3C.00 40.00 50.00 £0.00 70.00 78.00

0.000 0.c00 0.0 c.0 0.0 0.0 0.0 0.0 0.0

0.040 0.038 ©.033 C.C25 0.016 0.007 0.002 0.000 0.0
C.435 0.431 0.401 £.351 0.281 0.198 0.110 0.039 0.009
€.955 0.5+ 0.901 c.82¢ 0.717 0.571 0.389 0.194 0.06%
1.613 1.5%4 1.528 1.440 1.2%52 1.083 0.803 0.463 0.203
1.713 1.66¢ 1.845 1.555 1.416 1.215 0.538 0-573 0.2869
1.892 1.875 1.824 1.732 1.551 1.383 1.243 G.084 0.328
1.951 1.533 l.885 1.798 1.662 1.459 leltd 0,749 0.363
2.397 2.373 2.323 2.224 2.067 1.831 1.480 0.872 0.477
2.318 2,301 2.231 £.161 2.019 1,803 1.475 o.988 0. 491
2.341 2.325 2.21% Z.19% 2.059 1.8%2 1.534 1.047 0.529
3.174 3.153 3.093 2.984 2.810 2.541 2.125 1.474 0.758
3.693 3.968 3.896 2,765 3.558 3.232 2.725 1.919 1.003
40115 4.095 4.025 2. 85E 3.65¢6 3.378 2.875 2.059 1.097
4.222 4.118 4.051 2.630 3.735 3.428 2.938 2.129 1.151
4617 4.512 h.4h2 4,317 44113 3.793 3.274 2.402 1.321
5.20% 5.182 5.101 4.558 4%.728 4.366 3.783 2.800 1.559
5.615 5.585 5.458 5.344 5.09% 4.715 4.055 3.055 1.721
5.750 5.721 5.630 £.435 5.242 4.848 4.248B 3.193 1.821
5.799 5.771 5.682 5.5641 5.304 4.918 4327 3.277 1.887
5.784 S.756 5.674 5.533 5.305 4.964 4.352 3.317 1.526
5.887 5.857 5.773 5.625 5.360 5.022 4.622 3.a717 1.970
5.935 5.905 S.8l8 S.66¢ 5.425 5.053 4.450 3.405 1.994
£.932 5.503 5.818 5.666 5.533 5-067 4,472 3.434 2.020
5.980 5.950 S-866 €. T17 5.482 S.11% 4,521 3. 476 2,045
5.927 5.499 5.816 S.e7¢C 5.439 5.080 4,495 3.462 2.040
5.910 5.83) 5.797 5.65¢C 5.420 5.061 4.479 3.452 2.037
5.566 4.9+0 5.833 £.703 5.467 S.103 4.514 3.479 2.052
6.058 6.023 5.641 5.789 5.551 5.183 4.585 3.534 2.081
6.174 6. 144 6.058 5.50% 5.6t4 5.2%6 4.714 3.629 2.148
6.226 6.157 6.111 £.958 5.722 5.354 4.754 3.686 2.194
L.266 5,240 &.152 5.657 5.758 5.387 4.785 3.7l 2.218
€.312 6.2a2 €.1%2 6.03¢ 5.793 5.421 4.815 3.742 2.242
£.321 2.262 £,203 5.637 S.838 £.482 4.858 3.758 2.302
¢.330 6.301 6.217 c.83¢8 5.482 5.482 4.900 3.854 2.363
6.421 6.352 6.306 €.038 5.743 5.562 - 4.979 3.935% 2.438
£.513 £.483 6.395 £.250 &.004 S.641 5.058 4.015 2.512
£.594 6.9563 &.4T2 214 6.074 5.708 5.122 4.079 2.574
6.674 6.643 6.549 &.268 s 5.775 S.187 4.142 2.635
€.£56 &.626 €.5:7 €.276 6.135 5.777 5.15% 4.168 2.671
€.643 6.810 &.5264 t.505 6.134 $.176 . 5,211 4.193 2.706
6.5¢C YN 6,350 £.20C 5.58C S.71¢ 5.150 4.090 2.7%0
4,5 00- &.23) 6.250 £.150 5.910 5.653 5.110 4.070 2.750
L.l6l 6.320 £.220 &.C80C 5.87C 5.60C 5.05¢C 4,050 2.750
6.370 290 o.led £. 02 5.39C 5.35C 5.024 4.00 2.770
£.210 6. 150 aulug 9.75G 5.46C 4,978 4,020 2.7s0
6150 6-1:0 .0y S.25C 5.430C 4.526 4,000 2.750
v c. Loy 5.97) S.o40 5.40C PR 3.9%0 2.790
c-tuo 5.58C 9.34C 4.0y 3.570 2-790
ERCT 5.31C £.21¢C &£.848 3.900 2.759
Sau3l S.470 5.2>C LIN-NN) 3.9%0 2.1780C
3.0.0 3.42C 5.2:¢ 4.7¢0 5e%30 2.700

86.00

0.0
0.0
0.001
0.009
0.039
0.061
Q.077
0.083
0.107
0.106
0.111
0.156
0.202
0.215
0.223
0.251
0.292
0.319
0.333
0,340
0.342
0.342
0.328
Q.338
.23l
0.322
0.315
0.30%
0.303
0.311
0.320
0.324
0.327
0,349
0.372
0.400
0.429
0.455
0-431
0.499
0.5i8
0.530
G.5%9
0.520
0.560
0.580
0.5-0
0.590
0.5%0
C.o0u0
Va64d
C.eud
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algorithms, it suffices to say however, that their model includes
aerosol scattering and absorption, Rayleigh scattering, and ozone
absorption. The atmospheric state, N, assumed in the model corresponds
to annual average U.S. urban conditions, Flowers et al. (1969). This
condition corresponds to a cloud-free atmosphere over a typical urban

environment.

The photolysis rate constant for a particular species can be
determined by evaluating (8.23) and in practice the integral can be
approximated, with minimal error, by a finite interval summation of the

form

n
Kk = Z G Do ] B0 T T (A, 86.N(E) ,h,2) (8.24)
i=1

where the overbar represents an average over a wavelength interval AAi
centered at Xi. The actinic irradiance at a particular time and
elevation h is specified as a function of the zenith angle z. Compared
to the total solar spectrum, the summation interval is quite small

(290 < A < 800 nm). The photochemistry of the lower atmosphere is
dominated by the fact that virtually no solar radiation of wavelengths
less than 290 nm reaches the troposphere . Essentially all the incident
solar radiation at wavelengths below 290 nm is absorbed by gases in the
upper atmosphere, principally the Hartley band of 220-295 nm and by
oxygen in the Schumann continuum 175-145 nm (Coulson, 1975). The upper
limit for X is set by either the reduction of the species absorption
cross section or reaction quantum yield as a function of increasing

wavelength.
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Data for the species absorption class sections and quantum yields

as a function of wavelength are required in order to evaluate (8.24).

Tables 8.10 and 8.11 contain the appropriate information, compiled

from Schere and Demerjian

(1980), for the following

i

N02 +
HONO +
HNO3 +
03 +
O3 +
O3 +
HCHO +
HCHO +
HCHO -+
CHBCHO +
CH3CHO +

hv

hv

hv

hv

hv

hv

hv

hv

hv

hv

hv

-

(1977), Demerjian (1977) and Demerjian et al.

reactions

o(’p)
OH
N02
0(3p)
o('p)

1
0,(") (8.25)
CO
CO
20H
HO + CO

2
Co

The tables represent a collation of experimental information and have

been assembled to enable an independent verification of the photolysis

rate calculations.

The species rate constants, as a function of the

cosine of the zenith angle, are shown in Figures 8.4-8.14. The diurnal

variation of the rate constants for any date or location can be easily

evaluated using these figures and a knowledge of the solar declination

angle 6. The local zenith angle, Z

expression (Sellers,

1969)

, can be determined from the
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TABLE 8.11

10 nm integral averaged, centered about X

Ocm2 molecule_l)

A
(am) NO2 HONO HONO2 O3 HCHO CH3CHO H202
290 8.52 0.634 162, 3.18 4.66 1.23
300 12,83 0.276 44 .4 3.25 4.09 0.71
310 18.26 0.3 0.095 11.9 3.15 2.96 0.41
320 24.74 3.4 0.018 3.36 2.34 1.69 0.24
330 30.95 6.6 0.88 2.37 0.69 0.14
340 37.39 13.3 0.19 1.98 06.13 .08
350 44.90 17.0 0.04 0.84 0.05
360 50.11 9.6 0.18
370 54.05 17.2
380 56.99 10.9
390 58.22 2.3
400 59.52
410 58.03
420 54.52
430 51.46
440  48.50
450  45.50 .020
460 .036
470 .054
480 075
490 .096
500 .131
5106 174
520 .220
530 .276
540 .331
550 .378
560 L454
570 .509
580 -493
590 .515
600 .552
610 .498
620 417
630 .361
640 .318
650 .269
660 .217
670 .179
680 .152
690 .126
700 .098
710 .081
720 .068
730 .056
740 .048
750 .041
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cos Z = sin 5 sin & + cos ¢ cos ¢ cos h (8.26)

where ¢ is the latitude and h the hour angle. The relationship between
these angles is shown in Figure 8.15. At solar noon the hour angle 1is
zero and as a result it is related to the local standard time and

the longitude %. The declinmation angle is a function only of the day

of the year and it varies from 23°27" on June 21 to -23°27" on December
22nd. Values for each day and hour can be obtained from a nautical
almanac or calculated using the algorithm of Woolf (1967). This latter
approach, together with a simple interpolation scheme, and Figures 8.4-
8.14 is used to evaluate the photolysis rates in the airshed model. The
expression (8.26) can also be employed to calculate the day length and
in turn the sunrise and sunset times. A knowledge of these times is
very useful for controlling the numerical procedures during the rapid
chemical changes which take place during initiation or termination of the

mechanism photolysis steps.

A typical diurnal variation in the NO2 photolysis rate and a
comparison against the experimental observations of Zafonte (1977),
is shown in Figure 8.16. The predicted and measured values agree quite
closely over most of the day. Scatter in the experimental measurements
was primarily due to the presence of broken high cloud conditions
(Zafonte, 1977). Schere and Demerjian (1977) attempted a similar
correlation; however, most of the measurements available to them were

for non clear sky conditions and, as a result, scaling of the calculated
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results was required. vTable 8.12 presents a summary of the photo-
dissociation rates for the photolysis steps in the Falls and Seinfeld
(1978) mechanism. Scme preliminary results for ozone and the appro-
priate experimental techniques for formaldehyde {(HCHO), nitrous acid
(HOXNO), hydrogen peroxide (H,0,), and nitric acid (HN03) have been
described by Stedman et al. (1977). An additional point to note about
the results is that the rates have been calculated using ground level
actinic irradiance data. Within the lowest 5-10 km of the atmosphere
the actinic flux increases with elevation leading to higher photolysis

rates. The results of Peterson et al. (1977) for NO., and HCHO show a

2
significant increase with height. For example, at an elevation of
0.98 km the photolysis rate for N02, depending on the zenith angle,
is between 21 and 707 higher than the corresponding ground level value.

The photolysis rates should be recalculated if the modeling region is

at a high elevation.

Most theoretical calculations of the photolysis rate constants
assume 'clear sky' conditions. A critical problem in practice is how
to modify the calculated results when there is a perturbation to the
basic atmospheric state employed in the radiative transfer calculations.
Increased aerosol loadings or the presence of clouds would require

scaling of the photodissociation rates.
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When only broad band measurements of solar radiation are available
correction of the calculated values can be based on the ratio of
pyrancmeter observations to the theoretical clear sky transmission.
Because pyranometer data reported by air pollution agencies typically
only apply to total solar fluxes and the reaction rates depend on
the ultraviolet (uv) flux densities, the scaling ratio may not be a
good representation. Scattering is wavelength dependent and as a
result the uv flux is more strongly affected than the total solar flux.
Offsetting this to some extent, the flux density is much less sensitive

to scattering them than is the flux (Duewer et al., 1978).

In situations where uv pyranometer data are available another
approach is possible. Zafonte et al. (1977) and Stedman et al. (1977)
correlated their NO2 photodissociation rate measurements with solar
radiation in the uv portion of the spectrum. Radiometric data were
obtained with Eppley uv pyranometers that have a full bandwidth sensiti-
vity of 295-385 nm, a wavelength interval relevant to many photochemical
reactions. The results of the correlations are shown in Figure 8.17.
This graph provides a direct means of determining either the photolysis
rate from the radiation measurements or the scaling ratios for the
calculated values. Schere and Demerjian (1977) used uv measurements
and the calculated clear sky solar flux to scale the rate constants.
They reported substantial differences in some cases between theoretical
clear sky and observed rate constants, however, the uv scaled calculated

rates match the observations quite closely as in Figure 8.18.
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TABLE 8.12

REACTION

Photolysis Rate (min‘l)

7:24 AMb AverageC Peak

1 3
NO2 hv 35~ NO o(™P) 0.320 0.339 .508
HONO hv EE OH NO 0.0585 0.0631 .0963

20 3
O3 hv S5 0(7P) 0, 0.0229 0.0232 .0328
HCHO hv %& 2HO, co 0.00121 0.00163 .00284
HCHO hv 32 H2 Co 0.00258 0.00296 .00473

oy
RCHO hy 5 RO, HO, + CO 0.00103 0.00145 .00260
RONO + hv =2 NO RO 0.07044 0.07464 11184
H202 hv 2& 2CH 0.00082 0.00098 .00161
a) All values are fo

b) Photolysis rates at 7:24 Pacific Standard Time ,

c) Average of daylight hours.

d) Photolysis rate set to 0.22 of NO

0

2

26

June 1974.

P . 4o s ns om0 .
a r Los Angeles California (latitude 34.06 , longi-
tude 118.257, time zone = 8.
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Correlation Between UV Radiometric Measurements
and NO5; Photeolysis Rate - Experimental Points and
Solid Line are from Zafonte et al. (1977), Dashed
Line is Best Fit to Data of Stedman et al. (1977)
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FIGURE 8.18

Comparison of the Experimental (Circles), Theoretical (Dashed Line)
and UV Scaled Theoretical (Solid Line) Diurnal Variation of the
Photolytic Rate Constant for the Photolysis of NOy Near Raleigh, N.C.
(35.8°N, 78.609W) on April 28, 1975
(Source: Schere and Demerjian, 1977).
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8.7 Calculation of Atmospheric Water Vapor Concentration

Most photochemical reaction mechanisms require that the water vapor
be expressed in terms of concentration units like ppmV or ug/m3. While
it is a straightforward task to determine the concentration given
ambient measurements of temperature, pressure, and relative humidity,
the need to employ psychrometric charts or tables considerably
complicates automation of the process . This section presents a simple
algebraic procedure, based on McRae (1980), which enables the water
concentration to be determined to within 0.5% over the range of commonly

encountered meteorological conditions.

For a given temperature, T, relative humidity, RH, is defined as
the.rate of the observed vapor pressure to the saturation vapor pressure
at the same conditions. An alternative approach is to define RH in
terms of the mole fraction of water vapor in the moist atmosphere, ¥,
to the mole fraction at saturation Vg In either case the relative

humidity is often expressed in percent so that

RH = 100 - (8.27)
yS

Since the mole fraction is equivalent to the volume fraction the water

concentration in ppmv is given by

HZO(ppmv) = lO6y = 104RH Ve (8.28)

By using the perfect gas laws (8.28) can be written in terms of the

saturation vapor pressure PS(T) and the atmospheric pressure Pa' The

Ty
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error involved in using Dalton's Law over a temperature range of -50 to
50°C is less than 0.5% (Threlkeld, 1970). With this approximation (8.28)
can be written in the form:

HZO(ppmV) = lOéRH —_— (8.29)

In order to evaluate this expression, the saturation vapor pressure
must be known. While many tabulations and graphical forms exist in
the literature relatively few are suitable for direct inclusion in the
airshed model; what is required is an explicit algebraic expression.
One of the first attempts to describe PS(T) - T experimental data in
a functional form was the work of Goff and Gratch (1945). Their
function, while quite accurate (v 0.001%), involves a large number of
constants and contains highly non-linear terms. An approximate
expression for PS(T) in mb, applicable to a limited temperature range,

is given by (Iribarme and Godson, 1973).

2937.4

T
a

loglO[PS(T)] = - - 4.9283 lOgloTa + 23.5518 (8.30)
This form is sometimes called the Magnus formula and corresponds to

the inclusion of second and third terms in the viral equation of state.
For the purpose of this study the simple, but relatively unknown,
polynomial expression of Richards (1971) was adopted. The functional

form is given by:
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2 3 4

PS(T) = P, exp[13.3185t - 1.9760t" - 0.6445t” - 0.1299t ] (8.31)

A

where PA is the standard atmospheric pressure of 1013.25 mb, the
parameter t is defined in terms of the ambient temperature Ta(OK) and

the steam temperature TS = 373.15°K at pressure Pa'
s N 373.15
- >~ 1 - 7 (8.32)
a a
Equation (8.31) is more accurate than (8.30) and is valid to + 0.17%
over a temperature range of -50 to 140°C. The variation of PS(T) over
the range T = -50 to 40°C is shown in Figure 8.19. Table 8.13
illustrates the application of the procedure to some typical atmospheric

conditions.
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TABLE 8.13
APPLICATION OF PROCEDURE FOR CALCULATING

ATMOSPHERIC WATER VAPOR CONCENTRATION 2

Ta PS(Ta) Hégégim) HZO at 507 RH
(°C) (mb) ) (ppm)
—20 1.25 12.34 617
-15 1.91 18.85 942
-10 2.86 28.23 1411
-5 4.22 41.65 2082
0 6.11 60.30 3015
5 8.72 86.06 4303
10 12.28 121.19 6060
15 17.05 168.27 8413
20 23.39 230.84 11542
25 31.69 312.76 15638
30 42 .45 418.95 20947
35 56.26 555.24 27762
40 73.80 728.35 36417
45 55.89 946.36 47318

aAmbient conditions assumed for calculation Pa = 1013.25 mb

Steam temperature TS = 373.15°K.



8.8 A Simple Box Model for Testing Photochemical Reaction Mechanisms

Before a photochemical reaction scheme is used in an airshed model
it is necessary to carry out a series of tests to evaluate the perfor-
mance of the mechanism under a variety of conditions. A common approach
is to compare the prediction of the mechanism against observational data
from smog chamber experiments. While valuable, these comparisons
do not adequately test the kinetics over the range of conditions likely
to be encountered in the atmosphere. Specifically, few smog chamber
experiments include the effects of continuous injection of source
material or diurnal variations of solar radiation. This section
presents the formulation of a simple box model in which the effects of
different meteorological and surface removal processes can be isolated.
When interpreted as a well mixed chemical reactor, the mathematical
system can be used to model a wide variety of smog chamber experiments.
The range of valid atmospheric applications, however, is restricted by

the nature of the assumptions used in the model derivation.

The most elementary form of a box model is a well mixed, variable
volume, chemical reactor. A variable volume formulation is needed in
atmospheric applications because the vertical extent of pollutant
dispersion is controlled by diurnal variations in the depth of the mixed
layer. The effects of a capping inversion over an urban area can be

best studied if the mixing height is included as an explicit variable.

In order to account for these effects consider a single cell

located over a large, horizontally homogeneous, urban area (Figure 8.20).
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Schematic Representation of a Simple Box Model
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The source strength per unit area for species ci,i=1,2,...,n is represent-
ed by Ei' The box is of dimension LWZi(t) where L is the length

parallel to the spatially uniform wind field u(t). W is the box width

and Zi(t) the current mixed layer depth. The ventilation cross section

is wzi and the pollutant flux out of the box is simply wziuci, where s

is the average pollutant concentration in the well mixed box. If c? is
the background concentration, then the material flux into the box from
outside the region is WZiuc?. Generation or removal of species by
chemical reaction is represented by Ri(cl,cz,...,cn). In the present

model, surface interactions are parameterized in terms of simple

deposition velocity v

If pollutants, left at elevated levels from the previous day, are
advected out of the box before sunrise on the current day then the mixed
layer will grow into air containing ambient or background conditions.
Denoting ci as the concentration left above the current mixed layer,
then if ci > 0 the entraimment flux into the box is LWc?dZi/dt. A
collapsing mixed layer, however, does mot act as an impenetrable 1id.
Tgnoring the contribution from surface sources, the concentration within
the box is not affected by the volume change. When the ventilation is
weak, then ci should be replaced by c; so that the current concentration
is entrained the next day. In this present study, chemical reactions

amongst the species above the mixed layer are not considered.

Given the above assumptions and ignoring the effects of horizontal
diffusion, the conservation equations for pollutant material within the

box can be written as a set of ordinary differential equations.
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d b
— J = J J 7 -
dt(LhZici) LhZiRi(C) + L“Ei + Rziu(ci Ci)

37,

F LW — ¢S - Lwv c, (8.33)
=t 1 g1

= [=3
i=1,2,...,n
Dividing through by the box volume and taking into account the temporal

variations in Zi’ (8.33) can be written in the form

e dz v C

de E ,u b (c c) i g

gc = R+ z, 'L (e” =e) + = it~ Z, (8.34)
where the species index 1 has been dropped for convenience. For
numerical solution purposes it is convenient to have the Jacobian of
(8.34) which is given by (8.35) where [I] is the identity matrix.

dZ v
-8 dey _ ARG _wpgy L i, g
I =3¢ T The L] z, dt (1] zim (8.35)

In the above expression the terms involving dZi/dt are set to zero
if dZi/dt < 0. The form (8.35) is quite similar to the expression
originally proposed by Lettau (1970). The principal differences are:
the parameterization of the turbulent flux caused by entrainment, the
chemical reactions and surface deposition terms. If the box moves with

mean wind then (8.35) represents a one~dimensicnal trajectory model.

In view of the simplicity of the model, it is worthwhile to
reiterate the basic assumptions used in its formulation. The most

critical simplification is that the pollutants are well mixed up to the
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capping inversion. Unless the characteristic turbulent mixing time is
fast in comparison to the chemical reaction rates, then the box model

is not representative of atmospheric conditions.

8.9 Numerical Solution Procedures

The algebraic forms of the ordinary differential equations which
describe the kinetics of the mechanism shown in Table 8.1 are presented
in Appendix A. This system, subject to the appropriate rate constants
and initial conditions, was solved with the variable step, variable
order, backward difference scheme of Hindmarsh and Byrne (1975). This
method was chosen because it represents one of the best general purpose
approaches to numerical integration of stiff ordinary differential
equations. Selection of a method that was both robust and highly
accurate was important because in a number of cases the numerical results
of this appendix were used as standards for comparative evaluation of

solution schemes described in Chapter 11.

Except for cases in which steady state approximations were used,
the kinetics of each species were described by differential equations.
Because of their high concentration, constant values were assigned to
oxygen (2.1x105 ppmV) and the third body M(l.OxlO6 ppmV) which appears
in the ozone formation step. In each case the starting and maximum
step sizes were set to 10_5 and 10 minutes, respectively. Semi-relative
error control, with a convergence tolerance of € = 0.0001, was selected

because some species have an initial concentration of zero. From a
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practical point of view there is little to be gained by using smaller
values of €. In fact, setting € to be less than lO_4 in most cases
gave no useful additional information and at the same time drastically

increased the consumption of computer time.

8.10 Smog Chamber Experiments

A direct way of evaluating photochemical reaction mechanisms is
to compare the predictions against carefully controlled laboratory
studies. TFalls and Seinfeld (1978), for example, tested their model
against smog chamber experiments conducted at the Statewide Air Pollution
Research Center (SAPRAC) of the University of California at Riverside.
Extensive documentation of the experimental protocols, sampling procedures
and measurement techniques used at that research center are given in
Pitts et al. (1976), Pitts and Winer (1978) and Winer et al. (1980) .
The initial evaluation of the airshed mechanism employed propylene and
n-butane as well as different combinations of the two compounds. Further
experiments have been carried out using hydrocarbon mixtures which more

closely correspond to atmospheric conditions. A representative sample of

these results is presented in this section.

The initial conditions for one smog chamber experiment, SUR-119J
(Pitts et al., 1976), are reproduced in Table 8.14. This information
together with the photolysis and lumped hydrocarbon rate constants from
Tables 8.8 and 8.12 is sufficient to enable an independent duplication

of the mechanism performance. Table 8.15 and Figures 8.21 - 8.27



TABLE 3.14

Initial Conditions for Smog Chamber Experiment SUR-116J

SPECIES CONCENTRATION {ppmv)
NO 0.301
NO, 0.041
HNO, 0.012
co 7.45
HCHO 0.038
RCHO 0.023
ALK 0.358
OLE 0.039
C2H4 0.043
ARO 0.07
H,0 15500.0
0, 210000.0
M 1000000.0
Total Nitrogen 0.354
RHC (ppmV) 0.548
NOX/RHC (ppmv/ppmV) 0.642
Relative Humidity (%) 58.5-53.0

Temperature (°C) 30.5-33.1
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document these results as well as a number of other experiments. The

model predictions closely match most of the observed data.

There is some evidence that nitrous acid is formed during the
loading of smog chambers (Chan et al., 1976). Nitrous acid is produced

in the dark by the reactions

k
NO + N02 + HZO —

ky

2HONOC

and an equilibrium can be reached given sufficient time. The concen—

tration of nitrous acid achieved in the dark is governed by

d [HONO] 2

it (8.36)

= Zkf [NO][NOZ][Hzo] - Zkr [HONO]

Solution of this rate equation subject to [HONO]O = 0 yields the
concentration of nitrous acid as a function of time. As t =+ e, the

equilibrium concentration,

ke (0] [0, ) [,0] | 7/
[HONO] = (8.37)
eq kr J
is reached. Assuming that [NO], [NO2] and [HZO] are constant, (8.36)
can be integrated to yield
[HONO] f / ) ]
—[HONO]eq- tan [2t \/kf k. [¥0][KO,][H,0] [ (8.38)

Table 8.16 shows the approach of HONO to the equilibrium value as
a function of time for representative values of the rate of reaction.

The quantity of nitrous acid that forms in a chamber or atmosphere prior
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to irradiation can be estimated from equation (8.36). In their
simulation of the SAPRC experiments, Whitten and Hogo (1976) found
that about one-third of the equilibrium concentration of nitrous acid
was required as an initial concentration. The results in Table 8.16,
however, indicate that the time required to reach a substantial
fraction of the equilibrium concentration is long compared to that
characteristic of the loading and initial mixing in a smog chamber.
The predicted values shown in Table 8.16 and 8.17 are also consistent
with the recent atmospheric measurements of Platt et al. (1980). 1In
some of the smog chamber experiments increasing the initial HONO
concentration tends to decrease the time at which the NO2 maximum
occurs but does not influence the maximum concentration of NOé or 03.
In atmospheric simulations it is usually unnecessary to assume an

initial concentration of HONO since there is normally sufficient

aldehydes present at sunrise to provide an initial radical flux.
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TABLE 8.16

(a)

Case 1 Case 2 Case 3(b)
(NO) = 0.1 NO) =1 (NO) = 0.301
(NOZ) = 0.1 (NOZ) =1 (NOZ) = 0.041
(HZO) = 10000 (HZO) = 10000 (HZO) = 15000
(HONO)eq = 0.0125 (HONO)eq = 0.125  (HONO)eq = 0.0171
Time
i Case 1 Case 2 Case 3
(min)
100 0.0000% 0.0044 0.00008
300 0.00013 0.0132 0.00024
1000 0.00044 0.0423 0.00082
10000 0.00423 0.125 0.00758
ke ko = 2.2%x107° ppm—zmin_
(a) NOHNO,+H,0 ;—+ 2HONO k= | 4x10”3 ppm_lmin_

r

(b) Initial conditions correspond to smog chamber experiment SUR-1197J.
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TARLE 8.17

Predicted Concentration of Nitrogen Containing Species for Smog
Chamber Experiment SUR-119J

SPECIES CONCENTRATION (ppm)

O0(min) 60 (min) 120(min) 180 (min) 240(min) 300(min)
No, 4.1x107% 1.6x1070  2.3x1070 2.sx10”l 2.sx107t 2.3x107t
HNO, 0 2.2x107°  4.6x107° 4x107° 1.3x107% 1.8x107°
NO 3.01x10 7 1.7x107%  8.7x107%  4.4x107%  2.6x107%  1.6x10 2
HNO,, 1.2x107%  6.9x107°  2.8x107° Ax1077 5.4x107% 3.3x107%
PAN 0 8.8x107"  3.1x107°  6.2x107°  1.0x107%  1.4x10 2
RONO 0 1.0x107°  8.0x107%  4.6x107%  2.5x107%  1.3x107"
No, 0 2.3x107%  1.7x1077  7.8x1077  2.2%x107%  4.ex107°
RNO, 0 6.6x107%  1.4x107> 4x107° 3.6x107° 4.9x107°
2N,0, 0 2.3x107°%  2.4x107° 2x107% 3.4x107Y 6.6x1077
RNO,, 0 2.4x107%  5.7x107% 9x107% 1.2x1073 1.4x1073
HNO, 0 1.2x10°%  2.8x10 2 5x1072 6.2x107%  8.0x107°
M 0.3540 0.3539 0.3539 .3539 0.3539 0.3539
[Nitrogen

Balance]
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8.11 Species Conservation Constraints

If a physical system satisfies one or more conservation laws, then
a computational scheme which preserves the same constraint should be
used to eliminate at least one source of potential numerical error. The
use of numerical methods which do not preserve linear conservation laws
can often lead to highly inaccurate solutions. For an initial value
problem the basic constraint on conservation of mass can be expressed

in the form

WeCc = M (8.39)
or

W i 0 (8.40)

T . . . .
where W = {w,,w,,...,w_1 1s a vector of weights associated with each
1’72 n

T
of the species, C = [c .cn] and M is a constant depending on the

12C9s -
initial conditions. Comstraints can be applied to the total mass within
the system or to individual atomic components. In the airshed mechanism
the presence of lumped reaction steps, unfortunately, precludes the use
of total mass balance checks. The conservation constraint does however
apply to atomic species such as nitrogen. For the mechanism shown

in Table 8.1, M is given by

M= NO+N02+NO3+ HNO?_+ HN03+HN04+RN02+RNO3+RN04+2N205+PAN

(8.41)
The numerical method developed by Hindmarsh and Byrne (1975) and

used in this chapter employs a variable step, variable order, backward
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difference, multistep method of the form

K Ik iy
> o <M= Eieﬁ_. = (8.42)
i=0 J j=0 <73

where h =t -t , is the step size for the mth step, {a} and {8}

are the coefficients for the mth step in the variable step method.
Rosenbaum {(1977) has shown that such methods are conservative so
that, M, defined by (8.41) should be constant. This is indeed the case
as shown in Table 8.17 and Figure 8.19. While the use of linear
constraints to check on numerical accuracy is often very useful, it is
important to be aware of the limitations. In general, while a constant
value for M implies that the roundoff errors are small, it gives little
information about the magnitude of the truncation errors. Stated
another way, it is possible to devise extremely poor numerical solution

schemes that conserve mass.

8.12 Steady State Approximations for Ozone

The three principal reaction steps involved in the NO-N02—03

photolytic cycle are given by:

NO, + hv = No + 0C’B) 3 k; = 0.3 min ' (8.43)
0CR) + 0, +1 2 0, +M 3k, = 2x107 ppm C-min l  (8.44)
3 1, -1

05 + NO —— NO, + 0, ; k3 = 25.8 ppm -min (8.45)

Under most conditions these three reactions proceed at a rate nearly
two orders of magnitude faster than the kinetics of any of the other

steps involving ozone. A sample calculation of the forward reaction
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rates is shown in Table 8.18. The main oxidizing reaction (8.45), for
typical atmospheric concentrations, has a half life of approximately
30 seconds. Under these conditions many investigators have made the
assumption that the ozone production and decay rates are in equilibrium
and derived the photostationary state approximation (PSSA)

kl(NOZ)

e = 1 {8.46)
k4 (NO) (05)

Since there is a recurring debate in the literature about the validity
of the simple expression (8.46) this section presents a brief evaluation

of its validity for smog chamber simulations.

Eschenroeder et al. (1972) and Calvert (1976) have examined
experimental data collected in Los Angeles and concluded that time-
averaged atmospheric measurements often do not obey the photostationary
state approximation. Stedman and Jackson (1975) tested the hypothesis
that kl(NOZ)/k3(NO)(03)=1 in a set of carefully controlled measurements
of ambient air quality. Using 400 data sets they found that the left-
hand side was equal to 1.01 with a standard deviation of 0.2 and a
standard error of the mean equal to 0.0l. A variety of different
explanations have been offered to explain the discrepancies.
Eschenroeder et al. (1972), Seinfeld (1977) and Bilger (1977)
postulated that inhomogeneities in atmospheric concentrations of
NO and O3 could reduce the effective reaction rates of the system
(8.43-8.45). The basic problem is that when using time-averaged data
in the photo stationary state equation the product of average concen-

trations is not equal to the average of the products. In general,
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TABLE 8.18

(a)

Reaction Rate (ppm/min)

Mechanism
Component = 60 min = 300 min
d03/dt .070x10'4 8.732x10"
R,=k, (0 (0,) (1) 43%x1072 6.78x10 2
k4 (N0) (0,,) .36x1072 6.02x10 2
~ -4 -3
R,=k, (NO,) (0) .24%10 2.12x10
= -4 -3
Ry0=ky0(03) .14x10 4.61x10
-5 -6
Ryg=k4q (OLE) (0,) .77x10 2.63%10
-7 -6
R, 5=k, , (OB (0,) .34x10 1.03x10
. -8 -6
R, g7k, g (H0,) (05) .67x10 1.63x10
R.=k. (NO..) 41x1072 6.33x10 2
1 1YY2 SHIX - IO%
(a) 0, .01364 0.2005
NO L1541 0.01178
NO, .1690 0.1978
.096 16.79

NOZ/NO



351

unless the atmosphere is well mixed or the averaging times are

sufficiently short

k. (NO..) k (N0, 7
N D [ 2 (8.47)

1
7 k. {N0) (0,)

kB(NO)(O3) 3

The basic problem with testing this explanation is that it is
extremely difficult to perform the necessary experiments. Confirmation

requires very accurate and rapid determinations of k temperature,

15
NO), (NOZ) and (03).

Part of the variation can be readily explained by considering
the kinetics of ozonme formation. In the airshed model the balance

between ozone formation and decay rates is given by

do,
dt - Ry TRy - Ry - Ryg - Ryp - Ry - Rug - Ryg (8.48)
where
R, = 1,(0)(0,) (D)
R3 = k3(NO)(O3)
R, = k;(NO,)(0,)
R, = ko (0.)
20 = Kp0(03 (8.49)
R3O = k30(OLE)(03)

R47 = k47(0H)(O3)
Rug = k,g(HO.) (05)

= 3
R k;g(04)
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So that the correct expression for the quasi steady state approximation
(QSSA) is given by

k, (0) (0,) ()
[k3(NO)+k7(N02)+k20+k30(OLE)+k47(0H)+k48(H02)+k49](03)

1 (8.50)

Both (8.46) and (8.50) were tested using the concentrations predicted
in a numerical solution of the smog chamber experiment SUR-119J (Pitts
et al., 1976). At the end of a 400 minute simulation the error in the
photo stationary state (PSSA) was approximately 5% whereas (8.50) was
correct to within 1%. As shown in Table 8.18, early in the run, the
ozone kinetics is dominated by the photolytic cycle (8.43-8.45) and as
a result both (8.46) and (8.50) are of comparable accuracy. Later in

the solution, when NO, >> NO, the contributions from the terms R7 and

2
RZO become more apparent. These results indicate that in atmospheric
applications there could be significant departures from the photo
stationary state simply as a result of the chemistry. Future field
measurements should be directed at separating the influences of turbulent

inhomogeneities and chemistry when evaluating the validity of steady

state approximations.

8.13 Conclusions

In this chapter the basic airshed mechanism has been presented
together with sufficient information regarding injitial conditions, rate
constants and stoichiometry to allow an independent duplication of its

performance. The mechanism incorporates recent information on rate
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constants, mechanistic structure and, in addition, has been successfully

validated against a wide range of smog chamber experiments. Further

discussion of the sensitivity of model predictions to changes in the

various inputs is given in Chapter 12.

Note:

Subsequent to the publication of the kinetic mechanisms in

Falls and Seinfeld (1978) and McRae et al. (1981) a number of
modifications were made to some of the reaction rate constants.
These changes are documented in Tables 8.3, 8.8 and 8.12 and were
made to reflect more recent determinations of the basic kinetic
data. In section 8.10 Figures 8.21 and 8.27 show a comparison
between observed and predicted concentration profiles for the two
sets of rate constants.
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CHAPTER 9

NUMERICAL SOLUTION OF THE ATMOSPHERIC DIFFUSION
EQUATION FOR CHEMICALLY REACTING FLOWS

(Reprinted from J. Computational Physics, 45, 1-42)
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Review Article

Numericai Solution of the Atmospheric Diffusion
Equation for Chemically Reacting Flows

GREGORY J. McRAE, WILLIAM R. GOoDIN,* aND JOHN H. SEINFELD'

Environmental Quality Laboratory, California Institute of Technology,
Pasadena, California 91125
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A comprehensive study of numerical techniques for solving the atmospheric diffusion
equation is reported. Operator splitting methods are examined in which the three-dimensional
problem is converted into a sequence of one-dimensional problems. A Galerkin, linear finite
element scheme with a nonlinear filter is found to be computationally superior to the other
methods tested for the advection—diffusion components. The chemical reaction dynamics
component, treated within the splitting scheme, is generally highly stiff. A second-order
predictor, iterated corrector technique, in combination with an asymptotic treatment of the
stiff components, is found to be computationally superior for the chemical kinetics. The
validity of the pseudo steady state approximation for certain reactive species is also
investigated.

1. INTRODUCTION

Many disciplines in engineering and science depend on the availability of predictive
models of chemically reacting fluid flows. One area of considerable practical interest
and a source of many challenging problems in numerical analysis is the construction
of mathematical descriptions of the formation and transport of urban-scale air
pollution. A complete treatment of atmospheric concentration dynamics and chemical
interactions involves the full, three-dimensional turbulent planetary boundary layer
equations for conservation of mass, momentum and energy. Unfortunately the routine
solution of such a system is an enormous undertaking and not feasible on the present
generation of computers since a typical calculation might involve O(10%) grid points,
20-50 chemical species and O(10°) computer storage locations. A somewhat more
limited approach, and the focus of this work, is based on decoupling the mass conser-
vation equations from the equations of motion of the air. This simplification results in
a set of coupled parabolic partial differential equations that describe the combined

* Present address: Advanced Technology Group, Dames and Moore, 1100 Glendon Avenue, Los
Angeles, CA 90024.
¥ Department of Chemical Engineering.

0021-9991/82/010001-42802.00/0

Copyright € 1982 by Academic Press, inc.
All rights of reproduction in any form reserved.



2 MC RAE, GOODIN, AND SEINFELD

influences of advection, turbulent diffusion and chemistry within a prescribed flow
field. The presence of nonlinearities and the existence of widely disparate temporal
and spatial scales considerably complicate the selection and implementation of
suitable solution techniques. In addition the availability and utilization of
computational resources are practical considerations equally as important as the
requirement for numerical accuracy.

This paper begins with a general statement of the atmospheric diffusion equation
and proceeds to describe the use of coordinate transformations and operator splitting
techniques for numerical solution. Once the equations have been decomposed into
component parts by operator splitting, specially suited procedures for the components
(advection, diffusion, and chemical reaction) can be applied. We then describe the
choice and testing of appropriate techniques for solving the transport or advection—
diffusion components of the equation. The final element involves numerical solution
of the chemical kinetics. Although the numerical techniques described in this work
have been specifically developed to solve the atmospheric diffusion equation, much of
the material is applicable to other problems, particularly those that involve
chemically reacting fluid flows.

2. GOVERNING DIFFERENTIAL EQUATIONS

Consider an arbitrary, time-varying, spatial domain £, located in the Euclidean
space E* and bounded by 4,. In this region, a spatial point is denoted X =
{X,Y,Z} € 2,. Within 2, the conservation of mass for each of p chemical species
c(X,1); i=1,.,p, can be expressed by the following set of coupled, nonlinear,
paraboilic, partial differential equations,

% + V- (ue)=V- (K- Ve))+filcyrs cp), )

with (X, 1) € 2, X [0, T]. For this system u is the prescribed advective velocity field
u(X,t)= (u,v,w), K is a second-order, diagonal, eddy diffusivity tensor and /; a
temperature dependent chemical formation (or depletion) rate of species i. In
meteorological applications (1) is frequently called the atmospheric diffusion
equation [1].

To complete the problem formulation both the initial and boundary conditions
need to be specified. For the system (1) the initial conditions c,(X, 0), are given by

c(X, 0) = c¥(X); i=1l,.,p; X € 2,. (2)

The measured concentration data, from which the initial conditions are normally
specified, are sparse, irregularly spaced, and generally limited to ground level values.
Under these conditions, a representative initial field can be obtained by interpolation
using the techniques described in Goodin er al. [2-4]. Boundary conditions simply
represent statements of mass continuity across the enclosing surface 8£2,. For this
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system most practical cases are described by the inhomogeneous mixed Neumann
and Dirichlet boundary conditions

a(X,t)c; + (X, 1) % =g.(X, ) (X;0)€a2,x 10, T). 3)

In this equation ¢ indicates the normal direction to 052,, and the functions a(X, z),
b(X,1) and g«X,?) describe particular cases, the explicit forms of which are
presented in Reynolds et al. [5].

The difficulties that arise during numerical solution of (1)}-(3) stem.from the
radically different character of the advection, V. (uc;), turbulent diffusion,
V. (K-Vc,), and chemical reaction, f;, operators. Even though (1) is formally
parabolic in most atmospheric flows, transport in the horizontal plane is dominated
by advection, leading to hyperbolic like characteristics. One of the major sources of
difficulty arises during numerical solution of the chemical reaction terms f;. While
complicating the numerical solution, the presence of the nonlinearities in f; is not as
much a problem as the potential for eigenvalues that span a wide range of time
scales. In typical photochemical reaction mechanisms of the type described by Falls
and Seinfeld [6], it is possible to encounter situations in which individual reaction
times differ by OQ(108 seconds). That, in turn, virtually dictates an implicit solution
procedure for the chemical kinetics.

3. COORDINATE TRANSFORMATIONS

In typical applications the airshed domain 2, is defined by three bounding
surfaces; the topography Z = (X, Y), vertical sides at the horizontal extremes, and a
time varying upper boundary, Z = H(X, Y, t). The presence of topographic relief can
considerably complicate the numerical implementation of boundary conditions of the
form (3). The problem can be avoided to a certain extent by transforming the spatial
domain into one of simpler geometry. This can be accomplished by a mapping
F:02,- 2., that transforms points in the physical domain £, into the more
convenient computational domain £2,. Points in 2, are denoted by x = (x, y, z, ¢).

A variety of functional forms for F are used in practice; a common one in
atmospheric modeling application is the terrain-following coordinate transformation
(5,7, 8],

X

x=FX)= Y , (4)
Z—h(X,Y)

HX, Y,1)— h(X, )

that scales the vertical extent of the modeling region into the new domain z € [0, 1}.
So long as the time varying upper boundary H, does not intersect the terrain defined
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by h, then a unique inverse for (4) exists. The general requirement for a nonzero
Jacobian usually precludes the simultaneous use of these transformations in all three
coordinate directions.

Once the form of the transformation has been established, the next step is to apply
it to the atmospheric diffusion equation. An important characteristic of this equation
is that it represents a differential statement of the conservation of mass for each
species ¢;. Roache [9] indicates that, with few exceptions, the most accurate
numerical results are obtained using numerical approximations that are based on the
flux or conservative form of the governing equations. With this in mind, it is desirable
to preserve the conservative structure of (1) during the coordinate transformation. If
this is done, then it is possible to consider each computational cell as a control
volume and develop difference expressions that saiisfy the physical conservation laws
on a macroscopic level, not at the limit of small time steps and spatial dimensions.
Methods for manipulating first and second-order partial differential equations that
preserve the conservative properties are described in Anderson er al. [10], Oberkampf
[11}, and Vinokur [12]. Lapidus [13), in particular, has shown that with a
nonsingular space transformation, the conservative form of the governing differentiai
equations can be maintained. Using these procedures it is possible to develop the
following conservative form of the atmospheric diffusion equation,

0AHe,
ot

+V-(V4He) =V . (4HK, - V¢)) + dHf;,  (x)ER2. X [0, T], (5)

where (2, is now the transformed domain and 4H = H(x,y,!)— h{x,y). The
components of the transformed velocity field are now V = (u, v, W), where the new
vertical velocity W, is given by

W

1 [w—u(% 6AH)_U<8h 8AH>_ 8AH]. 6)

~aH 2x % ox 5 ) T a

One problem arises as a result of the transformation. Initially the eddy diffusivity
tensor K was diagonal, however, the transformed form is given by

! K. (6h  o4H\ T
er [ 0 ! —— (_+Z_A_)
’ | | AH \ox ox
_________ e
| f K,, 1oh  04H
S T S R LY
| : i 4H \oy ay
_________ g S
K. /oh 04H K, , (6h 04H K. (6h 04H\?
K.=1] - x"(—+z——) Z (— z ) = (—+z—> (7
AH \ox ox AH \dy ay 4H" \ox ax

a1\ TPy

K::

* 4H? =

1
1
|
|
: K,, (ah 6A11>Z
|
|
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While the presence of off-diagonal terms can complicate the numerical solution, their
contribution to turbulent transport in most urban scale flows is negligible since it is
possible to show, that for all but the most rugged terrain,

—t+z—
Gy cy

(8)

1 [ch N dAH <1 1 [oh c4H <l
—_—— 42z € 1; —_ c<€ L.
AH (dx ’ AH

4. GENERAL APPROACH TO THE NUMERICAL SOLUTION OF THE PROBLEM

Once the equations have been transformed, the next step is to formulate an
approach for obtaining numerical solutions of the model system. Although the focus
of the present work is the atmospheric diffusion equation, the problem can be stated
in the more general form,

L D) ) (W DERX (0T ©)
B(x, 1) ci{x, 1) = gi(x, t); (x,1)EoR,.x [0, T], (10)
ci(x,0) = cf(x); (x) € 2, (11)

where L is a multi-dimensional, semi-linear, elliptic differential operator containing
first and second-order derivatives, with respect to x, y, and z, but no mixed
derivatives, and B is a linear operator.

While there is an extensive literature relevant to obtaining solutions of the
homogeneous system there are relatively few numerical treatments of problems that
involve both chemical reactions and transport in three dimensions. Even though much
of what is available is confined to one- and two-dimensional systems, many different
techniques have been applied in practice. For example, Margolis [14]| used the
method of lines to examine the multi-component chemical dynamics of a premixed
laminar flame. Chin and Braum {15] employed a discrete analog of the invariant
embedding algorithm to solve the two-point boundary value problem associated with
a model of oil shale retorting. A variety of schemes were used by Engquist er al. [16]
to predict the performance of a catalytic converter; a fourth-order dissipative leap-
frog difference method for the hyperbolic components, a Dufort—Frankel procedure
for the parabolic elements and Newton iteration for the remaining noniinear
equations. Douglas er al. [17] utilized an extrapolated Crank—Nicholson—Galerkin
procedure when solving a quasilinear parabolic problem. Kansa [18] used a block
implicit scheme, modified to include the basic strategies of stiff ordinary differential
equation solution algorithms, to model the combustion process in an axisymmetric
wick.

There are two basic steps that must be undertaken as part of most approaches to
obtaining numerical solutions of systems of the form (9)-(11). One is to identify the
means for approximating the spatial derivatives and the other is to select the
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procedure for time integration. Spatial discretization techniques are used to convert
the system of time-varying partial differential equations into a set of ordinary
differential equations. In most cases this can be accomplished by using either
classical finite difference or finite element techniques to produce semi-discrete
systems of the form

de;
M—(F+Sci=fi(cl""’cﬁ’[)’ (12)

where the matrices M and S are typically large and sparse, especially for multi-
dimensional problems, and e¢; is a vector-valued function representing the concen-
tration distribution at r points in the computational domain. If M is the identity
matrix, as is often the case when finite difference techniques are used, then the system
(12) can be solved using the method of lines. Further details of different
parameterizations of the elements of M and S are discussed subsequently.

One of the major difficulties associated with a solution of (12) is that the set of
equations is usually quite stiff. Consider for example, the case of f=f{r) only and
constant M. Then the analytic solution of (12) is given by

¢;(t) =exp{—M 'S¢} ¢,(0) + f exp{—(t — 1) M!S} STf(7) dr. (13)
0

If 6 is the discretization parameter, either the computational cell size or finite
element, then the condition number of M~'S is O(6 %) [19, 20]. In fact, because of
the unboundedness of the eigenvalue spectrum as §— 0, increasing demands for
accuracy simply exacerbate the stiffness problem. What is not often recognized is that
the stiffness of the ordinary differential equations may be an artifact of the spatial
discretization and, apart from the character of €, is not a property of the governing
differential equations. Because the equations are stiff this usually dictates that an
implicit solution procedure must be used for the time integration. While not a major
restriction for one-dimensional systems, this can create major computational and
operational problems when extended to higher dimensions.

In many situations the practical aspects of implementing the computational
procedures can impose another set of limitations. Often the number of previous
results that can be held in fast core storage, during one solution step, constrains the
choice of a time integration procedure. In addition, careful consideration must be
given to the way in which arrays are indexed on computers that employ virtual
memory systems otherwise the paging overheads can become very large. These issues,
and the theoretical considerations discussed above, are some of the major motivations
for the use of operator splitting techniques.
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5. OPERATOR SPLITTING AND THE METHOD OF FRACTIONAL STEPS

If the spatial discretization procedures are directly applied to the three-dimensional
operator L, the resulting matrices, while sparse, usually cannot be economically
decomposed or inverted. One way to reduce the magnitude of the computational task
is to employ operator splitting and reduce the multidimensional problem to a
sequence of one-dimensional equations. If this is done then successive solutions to
each component part can be combined to produce a “weak” approximation to the
original operator. There are a number of significant advantages to be gained from this
approach. Because the matrices arising from the one-dimensional spatial
discretizations are usually tridiagonal, the cost of using stable impiicit procedures is
small. Perhaps the most important benefit is that the numerical solution techniques
can be tailored to the physical behavior of each element, a feature that is particularly
attractive in applications involving chemically reacting flows. For example, Rizzi and
Bailey [21] used the space-marching procedure of Rizzi and Inouye [22], in
combination with operator splitting, to examine the chemical dynamics occurring in
supersonic flows over complex geometric shapes. Similar approaches were adopted by
Kee and Miller [23] in a study of laminar diffusion flames and by Thomas and
Wilson [24] for chemically reacting turbulent jets. In each case isolating the reaction
kinetics removed the numerical time step restrictions on the transport operators
imposed by the chemistry.

The initial step in operator splitting is to decompose L into a sum of simpler terms
3
L=Y L, (14)

J

.

Although it is not strictly necessary, each L; is usually associated with a particular
coordinate direction. As an example (9) can be written in the form (L,=L,;
L,=L,;L;=L,)

ac;
e (Le+L,+L.)cx 1) +fLC) e €py X5 1) (15)

Once the elemental components L; have been identified, the next step is to determine
their equivaient discrete representation in the computational domain. First, the
continuously varying concentration field must be approximated at the r
computational points by the values c; = (c,(x;, #); j = 1, 2,..., 7). At each of the grid
points, the spatial derivative L; must be replaced by its discrete approximation. The
net result is the replacement of the scalar operation, L;c;, distributed over the
physical domain, by the matrix product Ac;. In this formulation the elements of A;
depend on the particular discretization scheme and its coupling of adjacent grid point
values. Given the numerical equivalents of each L;, they then must be combined in a
sequence that approximates the system as a whole. There are two common ways to
accomplish this; one is to use Alternating Direction Implicit (ADI) schemes and the
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other employs Locally One-Dimensional (LOD) or fractional step methods. The most
widely known splitting procedure is the ADI algorithm which advances the concen-
tration field a single time step 4: from the level n to time level n + 1 using the
sequence [25-27],

A4
c,—*—c}'=7lec,-* +AAA + A, + A el + AT, (16)
At
ck* —el= 5 [AreX + A ¥+ At[3(A, + A+ AL el (17

At At
of*F—el = [Acel H Aol H AT T+ AL H A H Al (18)

where ¢, ¢** are the intermediate results and ¢*** is an O(4:*) approximation to
¢/*'. An alternate, but equivalent representation, that is more suited to practical
problems, especially those involving steady state applications, is to solve for the

concentration increment using

At
[1— 2__AX](¢;k_c;')=At[AX+Ay+A:]c§’+Atf;', (19)
At
[I_ 2 Ay]<°.-**—¢?)=°?‘—°?, (20)
4t 3
[“TAZ (cf** —cf)=cf* —cl. 1)

By eliminating the intermediate results from (19)-(21) the ADI solution sequence can
be written in the factored form {26]

At A4t At
- P __A l_l+l__ n
[1 5 Ax][l 5 Ay“l 5 ] (¢! el

=At[A, + A, +A,| el + 4 (22)

Briley and McDonald {27] discuss the computational implementation of these
techniques and in particular the use of linearization procedures for solving nonlinear
partial differential equations. Apart from accuracy considerations, implicit
discretization procedures usually allow  arbitrarily large integration steps. When
splitting techniques are used to solve transient problems, the maximum allowable
time step is often constrained by the treatment of intermediate level boundary
conditions. Weare [28] and Briley and McDonald [27] present analyses of the errors
arising from different formulations of the boundary conditions. Unfortunately, ADI
procedures are not ideally suited to solving the atmospheric diffusion equation
because the coupling between the chemistry and transport in (16) imposes
unreasonable time step limitations. In addition, since each term of the governing
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differential equation is represented in each fractional step the memory paging
overheads can become excessive.

An alternative approach is to use the method of fractional steps introduced by
Yanenko [29] and described in Marchuk [30, 31] and Yanenko er al. |32]. Only the
homogeneous Cauchy problem will be considered here. We discuss how nonlinear
reactions can be included later. For the transport alone, the locally one-dimensional
approximations, using Crank—Nicholson time integration, are given by

’ [ e " |
C?HIH[I—?AjJ [I+7Aj]cfEnTj’-’c?ET"cf’. (23)

i=l

The principal difference between this formulation and the ADI scheme (20)-(22) is
that the solution is advanced only in one coordinate direction at a time. Detailed
discussions of the relationships between the two approaches are presented in Morris
(33}, Gourlay and Mitchell {34], Gourlay [35], and Gottlieb [36]. One important
observation that can be made is that there are two sources of error in the fully
discrete fractional step algorithm—the intrinsic error involved with operator splitting
and the discretization errors associated with the operator approximations. In general
these errors interact in a complex fashion. Crandall and Majda [37] have analyzed
the stability, accuracy, and convergence of the basic fractional step algorithm when
used to obtain discontinuous solutions of scalar conservation equations.

The formal order of the temporal approximation (23) can be developed by
expanding the operators T7 in powers of 4t to give [31]

. I P
Ti=1-dtAf +— (A])" =57 (A7) + - (24)

If A" =A%+ A} + Al then T" is given by
3

At? ! -
T":I—AtA"+7[(A")2+Z > (A;Ag—ABAG)+...]+0(At3). (25)

a=1 f=a+l

Thus the split operator difference scheme will be second order accurate only if the
split operators A% and A} commute; otherwise, it is only of first order. To obtain
second order accuracy, it is necessary to reverse the order of the operators each
alternate step to cancel the two noncommuting terms. The consecutive cycles are then

3

ef=[]Tre;™! (26)

j=1

and

1
ertl =] Trel 27
j=3
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The proof of the stability of these approximations is considerably simplified using the
following lemmas [31].

Lemma 1. Consider a positive semi-definite matrix A, i.e., (Ac;,¢,) >0, on the
Euclidean space, then for any value of the parameter i > 0,

II+4A)7'I< 1, (28)

where 1 is the identity matrix and ||-|| is the appropriate norm.

LEMMA 2. For any positive semi-definite matrix A and A > O then
[T—2A)T+AA) 1 L. (29)
Using (28) and (29) it is possible to show that
ler ™t i< lelll < - < edih (30)

These results ensure absolute stability and boundness of the solution provided that the
discrete operator approximation A is also positive semi-definite.

Implementation of operator splitting for the atmospheric diffusion equation
(neglecting chemistry) can be accomplished by further separation of the material
transport into advection (T),, and diffusive components (T),. If this is done, then a
second-order accurate solution is given by

c;H-l = (Tx)a(Tx)d(Ty)a(Ty)d(Tz)a(Tz)d(Tz)d(T:)a(T}')d(Ty)a(T,‘:)d(T::): C?_ l' (3 1)

Depending on the numerical scheme chosen, it is possible to combine the advection
and diffusion into one transport step in each direction. For the remainder of this
section and Sections 6 and 7 we focus on the atmospheric diffusion equation in the
absence of chemistry to develop the solution procedure for the advection and
diffusion components. Equation (31) indicates that the atmospheric diffusion equation
can be decomposed, by operator splitting, into a series of simpler one-dimensional
problems. Consequently, primary attention will be given to the one-dimensional
transport problem (the subscript i denoting species i is dropped for convenience),

oc 17 oc
S =Le=o (K_ua—x—m') (32)

and its component parts over the same domain

ac ouc
dvection: —=L ¢c=—— 33
Advection py 2C o (33)
and
e oc 0 ac
lefus10n: 5=de=a—xl<xxa (34)
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The basic objective of the remainder of this work is to identify numerical solution
techniques that are compatible with the characteristics of the physical problem,
computationally efficient, stable, and accurate. In addition it is important, from a
practical point of view, that the methods can be easily implemented and minimize
core storage requirements.

6. FORMULATION OF THE NUMERICAL SOLUTION

A wide class of numerical approximations to the spatial derivatives in (32) can be
expressed in the form H(dv/dx)=Bv, where v is the material flux at the r
computational grid points. The matrices H and B are of dimensions r X r with
elements set by the particular discretization scheme. For example, the standard
second-order, centered difference formula would have H=1 and B the tridiagonal
form [—1 0 1]. Given the material flux

de

V=K, =~ Ue (35)

then (32) can be written as an equivalent set of first-order problems

H 8_c_ Bc
ax
5 (36)
¢
g
ot Qv,

where B, H, P, Q are large sparse matrices resulting from the particular discretization
formulation and K, and U are diagonal matrices corresponding to the turbulent
diffusion coefficients and advective velocity components at each grid point.
Eliminating v the system can be expressed in the partitioned matrix form,

]
H 10 ?E Bc
| ox :
- —8_‘;— = —=—— ). 37)
| bl
QK. : P . QUc

The relationship between this formulation and the operator splitting approach
introduced in Section 5 can be seen in the explicit representations

Advection: %% =—P~'QUc=(T,),e¢, (38)

2
Diffusion: a—‘; — P 'QK,_ H 'Be= (T,),c. (39)
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These two results can be combined to give the complete numerical approximation for
ae/ot,

%zP"Q{K”H“B—U}cETxc. (40)
While easy to implement, a direct solution of (40) has a number of drawbacks, the
most serious of which is the need to evaluate H™' and P~'. Normally both H and B
are tridiagonal, unfortunately there is no guarantee that this property is preserved
under the inverse transformation. If H™' and P~' are full matrices, then the
operation count for evaluating the matrix products becomes quite large. The choice of
whether to use a direct solution or a block tridiagonal LU decomposition depends to
a large extent on the number of right-hand sides. A single evaluation of T, followed
by many products of the form T ¢;,, i=1,2,..,p, may be more economical. The
decision as to which is the more appropriate approach depends on the number of grid
points, chemical species and a detailed operation count for each procedure. For the
tests to be described in this paper block tridiagonal solution procedures were applied
to the system (37). The resulting set of equations, subject to the appropriate boundary
conditions, can be solved by standard methods. In subsequent sections the vector
notation for e, indicating the numerical approximations to ¢(x, t) at the r grid points,
will be omitted for clarity.

7. SOLUTION OF THE ADVECTIVE TRANSPORT STEP T,

There is an extensive literature that describes techniques suitable for solving the
hyperbolic problem (33) {9, 38—41|. Most of the approaches fall into five basic
categories: finite difference, variational, particle-in-cell, spectral and special purpose
procedures. On the basis of a preliminary survey, seven methods were identified for
detailed evaluation. These schemes were: the flux corrected transport algorithm
(SHASTA) [42-44], compact differencing methods [45-50], finite element methods
[51-53], the zero-average phase-error technique [54], upwind differencing [9], the
Crowley [55] technique and finally the scheme of Price et al. {56]. These methods
were used as described in the literature except for the finite element scheme that was
applied to the conservative formulation of the advection equation.

The particular finite element model used in this study employs a Galerkin
formulation and linear basis functions. With this technique, approximations to the
concentration and velocity fields are expressed in terms of time-varying coefficients
a;(t), B;(t) and piecewise continuous basis function 6,(x),

(o) = N ay(r) g,(x), @)

j=1

u(x, 1) =3 Bi(r) 9,(x), (42)

j=1
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where
X—X;_
6= ——I=L;  x  <x<x,
X —X;_
j T A=
X —X
+1 .

= xj<x<xj+1, (43)
Xjr1 —%;

=0; X < X; 0T X > X0

Equation (43) describes a set of linear basis function that vanish outside the
interval [x;_,, x;,,|. Using these functions, the Galerkin method requires that for all

6.
<%

By expanding the inner product (44), the following set of ordinary differential
equations in the dependent variable ¢(t) can be derived *

6a,9,
Fabe s 2 (5,6,,9,

> 0. (44)

0 29 450 Nyt (0 =0, (45)

where
= | 6,00 g(x) dx, (46)
M= | [0 0000 2 1 661 0,00 2 | @7)

To compare the solution schemes, some idealized test problems with known
solutions were selected. Particular attention was given to the harmonic content of
each test case. A concentration distribution containing components with wavelengths
shorter than the characteristic grid spacing represents a difficult test for any
advection scheme. If little numerical or physical diffusion is present, an initial profile
with sharp corners and steep sides should remain intact as it is transported by the
velocity field. Test problems were also chosen to allow simultaneous and individual
solutions of both transport components. In addition to the accuracy considerations
judged by the important attributes of mass conservation, minimal dispersion and
minimal pseudo-diffusion, additional constraints in choosing a numerical method
arise as a result of the availability of computational resources. Execution time,
storage requirements, ease of understanding, and implementation must also be
considered since the most accurate scheme may also be the least efficient.

A series of test problems, listed in Table I was used to evaluate the schemes. The
velocity was constant at 5 km/hr, the time step at 0.1 hours. The Courant number, C,

%
The algebraic details are contained in Appendix B.
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TABLE [

Test Problems for Advection Equation

Wave form Function Fourier spectrum
1 < 9 sl w6
= in —
1x) < = 3
Square c(x, 0)=
(o > 8 wf
x> 2
6
@ sin (-c—u—->
Triangl x,0) jl—ul/e x| <8 2
riangle c{x, ) = -
& 0 x| > 8 wdn ?
(%)
2 1
Gaussian c(x, 0) = exp [—H (%) ] 6/M exp [ - (0w)2]

f#—Volume/unit width ratio for the wave form.

was 0.25, which is less than the stability limit for all schemes. These parameters were
chosen to be representative of meteorological conditions over a typical urban airshed.
The results of the tests are summarized in Table Il and shown in Figs. 1-3. Further
detailed testing with a range of sample problems narrowed the solution methods to
the SHASTA technique and a class of techniques that use linear finite elements or
compact differences together with Crank—Nicholson time integration.

7.1. Preservation of Positive Quantities and Filtering Schemes

During the course of the testing it became obvious that in order to develop a
scheme that preserves peaks, retains positive quantities, and does not severely diffuse
sharp gradients, an additional step must be performed to minimize the effect of
dispersive waves. As noted by Kreiss and Oliger [57], the basic problem with
conventional Galerkin formulations is that they result in nondissipative, discrete
approximations when applied to hyperbolic equations. What is required is a
procedure for damping out the small scale perturbations before they can corrupt the
basic solution. There are several different filtering procedures that can be applied: (1)
adding diffusions terms to the basic equation [58], (2) expansion of the concentration
field in orthogonal functions with a recombination that omits high wave numbers
[59], (3) numerical filtering where the grid point value is replaced by an average
formed from surrounding values, (4) inclusion of a dissipative term in the problem
formulation {60, 61}].

At the simplest level, one approach is to set any negative concentration to zero or
a very small positive number following each advection step. This procedure is
demonstrated using the finite element method with a square wave in Fig. 4a. While
trivial to implement, this correction scheme can induce’ violations of mass conser-
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TABLE II

Summary of Results of Advection Tests for Different Initial Distributions *

Test
Square (S) Extreme value Change Relative
Numerical Gaussian (G) in mass computational

scheme Triangle (T) Maximum Minimum (%) time

Upwind [9] S 0.755 0.0 0.0 1.0
T 0.693 0.0 —0.03
G 0.635 0.0 —0.01

Price [56] S 1.463 —0.390 —-0.93 1.2
T 0.971 —0.086 —0.50
G 1.108 —0.216 0.26

Fromm [54] S 1.084 —0.067 —0.05 1.8
T 0.918 —0.015 0.28
G 0.964 —0.006 0.07

Crowley [55] S 1.219 —0.222 —2.02 20
T 0.932 —-0.017 0.28
G 0.990 —0.001 0.07

Finite element S 1.218 —0.382 -10.27 2.0
[Text] T 0.953 —0.025 0.17
G 0.999 —0.001 0.16

SHASTA [4244] S 0.997 0.0 0.0 5.2
T 0.875 0.0 0.20
G 0.900 0.0 0.04

* Results are at the end of 80 time steps.

vation. Mahlman and Sinclair [62] attempted to correct this problem by using a
method called “downstream borrowing.” In this scheme, implemented at the end of
each time step, negative values are reset to zero by borrowing material from the
downstream grid cell so that mass is conserved. In the event that the downstream cell
does not contain an adequate amount of material to prevent both cell concentrations
from becoming negative, the deficit is borrowed from the upstream cell. With higher-
order schemes it is occasionally necessary to borrow mass from the second cells
away from the one containing negative c. Although this filling procedure always acts
to preserve the total mass in the system, it systematically acts to reduce the mean
square concentration. Filling is thus equivalent to adding a nonlinear diffusion term.
An example of the application of this procedure is shown in Fig. 4b again using the
finite element method with a square wave initial condition.

Boris and Book [42,43] and van Leer [63] have introduced different approaches
to the design of filtered second-order schemes. Their algorithms substantially inhibit
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Results of advection tests using square wave form.

or eliminate computational noise in regions of sharp gradients by using nonlinear
smoothing techniques. The principal disadvantage of both methods is that there are
substantial amplitude penalties associated with sharply peaked waves. When the
SHASTA scheme of Boris and Book is used to advect a triangle, after a few steps the
apex is typically severely truncated. However, once this has occurred, the distribution
is transported with liitle change.

Recently Forester [64] introduced a very simple nonlinear filter designed to be
used in conjunction with second and higher-order methods. Computational noise is
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FIG. 2. Results of advection tests using triangular wave form.

minimized without incurring the amplitude penalty of either the SHASTA or van
Leer techniques. When coupled with high-order schemes, the Forester method
requires less than one-third of the mesh points of the SHASTA scheme to treat the
extremes of sharply peaked waves. Positive concentrations are also preserved. The
noise generated by the finite difference approximations of (33) is suppressed in the
Forester method by a nonlinear filter that locally transforms (33) into

oc

E-i‘

3uc_i ac
ox  éx "ox’

ac

(48)
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where K, is the diffusion coefficient associated with the filtering process. After the
solution is advanced a time step, a set of empirically based criteria is used to decide if
the term should remain or be removed. The filter for (33) is given by

K
C}(H = C}( +7f [(Cj+1 - Cj)('//j + Wj+1) - (Cj - Cj—l)(Wj +y;_ 1)]ks (49)

where cj.‘“ is the value of c; after k applications of the filter and K, is the weighting
coefficient associated with the filtering process. The w,’s can only assume a value of Q
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or 1 and determine the points at which smoothing occurs. Clearly if all are zero, no
filtering takes place. For the condition w; =1, (51) takes a form that is analogous to
the three-point difference expression for the diffusion term,

citl=cf+ Kej — 2, + ¢, 1 (50)
A key element of the filter application is the selection of the points in the grid mesh

at which to set w = 1. Initially, all v are set to zero. Consider a point j and an
interval [j—m,j+ m+ 1]. On this interval the function S, is evaluated using

S.=senlc,—c,_,|; e=j—mj—m—1,.. Jjj+l...j+m+1, (51)
where
¢
sgn(c) = +1, W;O,
(52}
c
=_1 = <0
* e

At mesh point j there is an extremum of ¢; if S; and S;,, are of opposite sign. The
distribution of ¢ on the interval [j—m,j+ m+ 1] is considered to be smooth if
S;i 19 Sjime have the same sign and all S;_,,..., S;_,, are of opposite signto S, ,.
If this occurs, the values of y are left unchanged and no smoothing is applied to ¢
No tests for sign continuity of §,,..., S;_m-, are performed unless c; is an extremum.
These cases are illustrated in Fig. 5. If the slope or sign continuity does not hold for
the m values of S on each side of the extremum in c;, wis reset to 1 for the range of i
from i—1to i+ 1 To ensure that the mesh points at which v is nonzero in fact
denote regions that contain computational noise, it is necessary to select the proper
magnitudes for / and m. The value of m is chosen to be representative of one-half the
wavelength of the lowest-frequency noise waves; / simply must be large enough to
permit nonzero ¢ values to be continuous.

For many high-order advective schemes nonlinear effects tend to drive the
wavelength of the computational noise toward the limit of two mesh intervals, this
can be seen in the results shown in Figs. 1-4. In general, the structure of the
dispersive waves depends on the advection algorithm, its performance for different
Courant numbers, and the nature of the concentration gradients. Values of m, [, K,
and the number of iterations required to satisfy the error tolerance must be deter-
mined empirically. For the above fourth-order schemes the values chosen were m = 4,
=2, K,=0.2, and the number of iterations set to 2 and 3 for local Courant numbers
less than 0.5 and greater than 0.5, respectively. An application of the filter, together
with the finite element scheme, to the square-wave propagation problem is shown in
Fig. 4d. There is clearly a significant improvement over the results displayed in
Fig. 1. .
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FIG. 5. Steps in the application of the discrete noise filter. (a) Initial distribution ¢°. (b) Evaluation
of the normalized derivatives. (¢) Establishment of ¥ function. (d) Resulting distribution after one filter
application ¢'.

7.2. Conservation Properties of Different Advection Methods

With the addition of the nonlinear filter, the performance of the finite element
scheme improved to the point where it was useful to perform a quantitative
comparison between it and the SHASTA method. In particular, it was important to
assess the ability of each scheme to preserve mass, concentration gradients etc. A
variety of initial distribution and velocity fields were used to test the techniques. The
triangle test problem used in previous sections of this work has the property that

%jcdx=o, (53)
%J'czdx=0, (54)
g;jcnu:o, (55)
%f (Z—;)z dx=0, (56)
%j (2—;‘;>de=0. (57)

Each of these integrals was evaluated numerically using, in the case of (56) and (57),
standard finite difference approximations to the derivatives. While a numerical
scheme should ideally conserve both mass (53) and mean square mass (54), diffusive
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TABLE 111

Results of Advection of Triangular Wave Form after 80 Time Steps

ERROR (%) = 100 (calculated/exact — 1)

. ) 3 ) ) o 2 . n2
vmwel o foa s ((E)a (2
scheme . - . ox cx®
Fourth order 0.20 0.00 ~0.44 —3.15 —28.17
SHASTA 0.20 -0.92 —5.51 —12.40 -97.75

effects tend to damp the latter quantity. The ability of a numerical scheme to
maintain peak values is measured by (55), growth or decay of local gradients by (56)
and change of profile curvature by (57). In a more general context, it should be noted
that integrals (53) and (54) are analytically conserved in more complex source-free
and nondiffusive flows. If gradient reducing diffusion terms are not included in
calculations with more complicated flows, (56) and {57) tend to increase with time
from either numerical distortion or from a physically real cascade to smaller spatial
scales [62]. In practice, it is often difficult to establish which of these two effects is
dominant. Since (56) and (57) are conserved in the test problem, any increase in their
magnitude with time must be attributed to numerical errors. If this occurs, extra
damping would be required to suppress the growth of the errors.

Errors in preserving the conservation properties for the SHASTA and fourth-order
schemes are displayed in Table III. The SHASTA scheme performs poorly at main-
taining peak values and, in addition, has the most diffusive effect on the profile. By
comparison, the finite element method exhibits little diffusion.

A test of the capability of each scheme to handle variable velocity fields was also
devised for the system

oc  Ouc .

M o , 58
St =0 x€[0,100] (58)

where the velocity field u(x) is given by

x+1
= . 59
u(x) =" (59)
The exact solution, c,{x, ¢) of this system is
t
c(x, t)=0.1(x+ 1)exp [—— —1—0—} . (60)

Initial and boundary condition for the problem are cfx,0)=¢,(x,0) and ¢(0,¢) =
c,(0, ). Each numerical scheme used a grid size Ax=2km, and a time step
At = 0.2 hours. Under these conditions, the maximum Courant number is 0.5. After
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TABLE IV

Errors in Concentration Predictions after 120 Time Steps
for a Spatially Varying Velocity Field

Error (%) at

Numerical
scheme x =24 x =50 x=176 x = 100
Fourth order 0.87 -0.08 0.01 0.03
SHASTA 1.18 1.20 1.20 1.87
Exact solution 0.0338 0.0690 0.1042 0.1367

120 time steps (24 hours), the errors were calculated and the results are shown in
Table IV. While each scheme performed reasonably well, the finite element method
produced better predictions at all spatial locations.

A rather difficult advection calculation, in two dimensions, is the rotating cone
problem introduced by Crowley [55] and Molenkamp [65]. The test consists of
solving the axisymmetric advection problem

@ de

= 61
8t+w39 0, (61)

where 8 is the angular coordinate, and w the angular velocity around the axis of
rotation. The exact solution of (61) is given by c(r, 8, 1) = c°(r,  — wt), where ¢° is
the initial distribution of ¢. Since there is no physical diffusion, the shape ¢ should
remain unchanged upon rotation. The Crowley problem consists of solving (61) in
rectangular coordinates where the rotation is anticlockwise about the origin.

TABLE V

Summary of Results of Two-Dimensional Cone in a Circular
Wind Field (C, =C,=0.5)

1/4 Revolution 1 Revolution
Numerical Maximum Minimum Maximum Minimum
scheme value value value value
Fromm 0.7400 —0.0218 0.5466 —0.0288
Crowley 0.8478 —0.0586 0.7283 —0.1279
Finite element 0.8731 —0.0335 0.8645 —-0.0545
SHASTA 0.6670 0.0 0.5118 0.0

Exact solution 1.06000 0.0 1.000 0.0
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FIG. 6. Results of Crowley test problem for a quarter and complete revolution of a cone using (a)
SHASTA method and (b) linear finite element scheme (without filtering step).
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Under these conditions, the velocity components are given by u = —yw, v =xw
and

ge_fwye | cwxe (62)
ot ox ay

The method of fractional steps was used to solve the problem on a 32 X 32 grid with
Ax = Ay = 1km, 4t = 0.5 hrs and w = 0.0626 rad/hr. A conical distribution, centered
initially at (=8, 0), of base radius 4 and with ¢, = 1, ¢, =0 was used to describe
¢®. The results of the experiment, summarized in Table V, are displayed in Fig. 6; the
conclusions are similar to the last test case. The peak truncation problem, charac-
teristic of SHASTA, is particularly apparent. From a practical point of view, it is
encouraging to note that the amplitudes of the dispersive waves associated with
unfiltered finite element scheme are quite small.

8. SOLUTION OF THE DIFFUSIVE TRANSPORT STEP T,
AND BounDARY CONDITION TREATMENT

Previous sections were devoted to the implementation and testing of a suitable
scheme for the advection equation. The contribution to species transport from
turbulent diffusion depends on the coordinate direction. In the horizontal plane,
transport is dominated by advection and so a simple, explicit three-point finite
difference form [9] can be adopted for (T,), and (T,),. A linear finite element
scheme, with Crank—Nicholson time differencing, was used for (T.),. This removed
the time step limitation of an explicit method and enabled the use of variable mesh
spacing to resolve vertical concentration gradients.

The boundary of the grid is usually placed at the limits of the available data or far
from the main calculation area. Boundary conditions are termed either inflow or
outflow, depending on the direction of flow relative to the grid region. Often in fluid
flow problems, the concentration at the inflow boundary is known and can be
specified as a function of time. The outflow boundary is generally not known and
therefore must be calculated. This boundary condition is sometimes called a
“computational boundary condition” for this reason. Some helpful discussions of
boundary conditions exist in the literature [66-73]. The boundary conditions used
with (32) are

inflow: uc—K,, o« = Ucqy,, (63)
ox
outflow: —K . g =0, (64)
ox

where ¢, is the known concentration just outside of the inflow boundary. If it is
assumed that advection is the dominant transport mechanism at the outflow
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Fie. 7. Structure of the algorithm for solving the advection—diffusion equation for species transport
in the x-direction.
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boundary, then diffusive transport can be neglected. If the left end of the grid is an
inflow boundary, then (63) can be represented as

n+1 1 C;+l_c’;+l n+1
ulcl - 5[(Kxx)l + (Kxx)Zl T= ulcin ’ (65)

n+1

which, in turn, can be solved explicitly for ¢}*' since all other quantities are known.
When using a multiple-step, advection—diffusion algorithm, (65) is used following the
second (diffusion) step. A boundary value must also be set following the first
(advection) step. The single condition u,¢, = u,¢;, is used for this step in conjunction
with a smoothing procedure at the point adjacent to the boundary point. This
smoothing damps any waves that may be generated by the inflow boundary point.

The simplest smoothing algorithm is
of =2t H (el + e, (66)

where c¥ is the smoothed value of ¢”*' at j = 2. A procedure analogous to the above
can be applied to the right boundary. The concentration at an outflow boundary is
influenced by information from the interior of the grid. Concentration gradients that
are advected to the boundary must be preserved as they pass out of the grid. The
simple choice of representing (64) by a zero gradient, i.e., ¢, =c, or ¢, =¢,_,, where
r is the right boundary point, was discarded due to its inability to preserve gradients.
The approach adopted was to solve the advection equation (with zero diffusion) using
a one-sided difference at the boundary:

1 1
et + u, ;" —u,_ 0% -0 (67)
At 4x ’

This procedure preserves concentration gradients as they move out of the grid system
as can be seen in the previous figures for the one dimensional test problems.

Figure 7 shows a flow diagram of the numerical solution of the advection and
diffusion components of the atmospheric diffusion equation.

9. NUMERICAL SOLUTION OF THE CHEMICAL KINETICS

In the previous two sections primary emphasis was placed on the transport
components of the atmospheric diffusion equation. Equation (1) contains terms, f;,
i=1,2,.,p, that describe the contributions to the rates of change of the p chemical
species concentrations, c,, C;,..., C,, due to chemical reactions. At any one spatial
point the rate of change of each species concentration resulting only from the
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chemical kinetics can be described by a set of coupled, nonlinear ordinary differential
equations,

de; .
rr =fiC15 Capns €y 15 i=1,2,.,p, (68)

and associated initial conditions ¢,(0)=¢c?, i=1, 2,..., p.

There are two sources of difficulty that arise during the numerical solution of (68).
One is minor and caused by the nonlinearities resulting from the polynomial form of
the mass action rate laws. The more serious problem, however, arises as a result of
the fact that in atmospheric systems there are reactions whose characteristic time
scales differ by orders of magnitude. Such systems are often referred to as being
“stiff.” There are various definitions of what constitutes stiffness, the most common is
of the form:

DerFmvITION.  The system (68) is said to be stiff if

(a) Re(d;) <0 i=1,2,..,p,
and

(b) (max|Re4;|)/(min [Red,)=R > I,

where R is the stiffness ratio and A, are the eigenvalues of the Jacobian matrix J =
of/oe. A way to view the problem of stiffness is to write (68) in the form

dc;
_dt—’z i~ bicis (69)
where q; is the production rate for species c; and b;c; is the loss rate. The reciprocal
of b; can be interpreted as the characteristic time for decay of species i. If a, and b,
are constants then (69) can be solved to give

) =3+ |e0) 5 | exo(-bi (10)

i i

Expressed in this way, it can be seen that 1/b; describes how quickly species c;
reaches its equilibrium value. Figure 8 presents a typical eigenvalue spectrum for
atmospheric reaction mechanisms together with the characteristic reaction times 1 /b;.
Two features are readily apparent: one is the close correspondence, for many species,
between the eigenvalues and the characteristic reaction times and the other is the
extreme range O(10'2 min) of the spectrum.

In passing it is worthwhile to comment on the reason why some of the eigenvalues
are so closely matched to the corresponding reaction times. Consider atomic oxygen
(O), which has the fastest reaction time of any species in the system. An examination
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FiG. 8. Typical eigenvalue spectrum and characteristic reaction times for the photochemical
mechanism of McRae er al. [89].

of O atom production and decay rates under typical conditions indicates that the
predominant removal step (by four orders of magnitude) is reaction with molecular
oxygen

0+0,+M-0,+M. (71)

Since the concentration of both molecular oxygen (O,) and the third body (M), are
fixed, the kinetics of O are described to a very good approximation by (69) with q;
and b, constant. Under these conditions the eigenvalues and characteristic reaction
times can be expected to be similar. This behavior was also observed for most of the
free radicals: RO, OH, RO,, NO,, RCO;, and HO,. When there is coupling between
species, and the rate terms are of comparable magnitude, the a;s and b/s are no
longer constant and the analytic solution (70) is inappropriate.

9.1. Selection of a Suitable Solution Scheme

In the last few years considerable effort has been devoted to developing general
purpose algorithms for solving stiff ordinary differential equations {74-79].

In applications involving simultaneous transport and chemistry such as that of
interest here, the reaction rate equations must be integrated at a large number of grid
points for relatively short periods of time between transport steps. As a consequence.
self starting methods with low overheads are highly desirable. As mentioned earlier.
the large size of the computational grid usually precludes storing more than the
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results of the previous time step. From a pragmatic point of view it is important to
recognize that errors associated with the transport steps are rarely smaller than a few
percent so in general there is little to be gained by requiring highly accurate solutions
of the kinetics. Summarizing, the desirable requirements of a solution scheme for the
chemical kinetics are low start up costs, minimal computer memory requirements,
and extreme computational speed.

Given the above considerations, two different solution schemes were sought; one
capable of providing highly accurate benchmark standards of predictions and the
other, an extremely fast algorithm for use in the airshed model. Since the factors
influencing the choice of the method use in the model are discussed in Section 9.3
they will not be discussed here. The method chosen to establish the standard of
accuracy for judging other methods was the implementation of the Gear technique by
Hindmarsh and Byrne [80] and Byrne et al. [81]. Their program, called EPISODE,
is extremely well documented and has been subjected to extensive testing by a
number of different investigators [79,81]. Unlike the original Gear method, the
program employs a true variable step, variable order approximation that is ideally
suited to problems with time varying parameters. Another reason for choosing this
particular code was the ease with which different treatments of the Jacobian could be
tested. In the version of EPISODE used in this study the Jacobian could be evaluated
in either of four ways: functional iteration, analytic evaluation, finite differences, or
diagonal approximations. The ability to exercise easily these options considerably
simplified the task of identifying the most efficient means for solving the chemical
kinetics.

9.2. Pseudo Steady State Approximation

Even with fast integration schemes the computational cost of solving the
atmospheric diffusion equation is extremely high. There is a need to reduce both the
number of active chemical species, to minimize storage requirements, and the
stiffness, to lower the computational cost. One approach, commonly used in chemical
kinetics, is to alleviate some of these difficulties by employing the pseudo steady state
approximation [82, 83]. The basic idea behind this approximation is that the tran-
sients associated with the stiff variables decay very rapidly to their equilibrium
values. If the concentrations are partitioned into two components, one associated with
the nonstiff components ¢, and the other comprising the stiff species, ¢, then if the
pseudo steady state approximation is used, (68) is replaced by the systems

¢, =f,(cys ) (72)
and
0 ="f(c,c,) (73)

The two main difficulties associated with the valid use of pseudo steady state approx-
imations are the identification of those species that can be treated in this way and the
determination of the time after which the approximation is valid. For simple systems
there is an extensive literature that utilizes singular perturbation theory to establish
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the appropriate bounds [78, 82-84]. Unfortunately, there is as yet no well-developed
theory for systems as complex as the photochemical reaction mechanism utilized in
this study. Thus, an approximate way to identify candidate species was developed.

The particular approach adopted in this study was to analyze the behavior of the
kinetic equations by performing an eigenvalue—eigenvector analysis of the mechanism
Jacobian under a wide variety of test conditions. The reason for doing this is that the
eigenvalues all have negative real parts that can be ranked into two distinct subsets.
The first set of largest negative eigenvalues generally have eigenvectors containing
only one or two components. These elements as noted above usually correspond to
those species that have very fast reaction times. These A’s typically have magnitudes
as large as 107, corresponding to species half-lives as short as 10~° seconds. The
second set of eigenvalues has corresponding eigenvectors that each involve many, if
not most, of the species in the reaction set. These represent the relatively slowly
reacting species.

Using the eigenvalue analysis procedure, nine species were identified as candidates
for the steady state approximation: O, RO, OH, RO,, NO,, RCO,, HO,, HNO,,
and N,O;. The solutions using the steady state approximation and one where all
species were treated by differential equations were compared over a wide range of
conditions. Typical examples of the resuits of these tests are shown in Tables VI and
VII. Table VI is an assessment of the validity of each approximation. An inspection

TABLE VII

Comparison between Predictions of Complete System
and Kinetics Using Pseudo Steady State Approximations

Concentration
(parts-per-million by volume)

Time Complete Kinetics with
(min) Species system 9 PSSA species % Difference*
30 NO 0.0566 0.0567 0.18
NO, 0.4034 0.4070 0.89
0, 0.0830 0.0834 0.48
60 NO 0.0202 0.0202 0.00
NO, 0.3869 0.3889 0.51
0, 0.2189 0.2191 0.09
90 NO 0.0110 0.0110 0.00
NO, 0.3338 0.3329 —-0.27
0, 0.3379 0.3383 0.12
120 NO 0.0066 0.0066 0.00
NO, 0.2628 0.2652 0.91
o, 0.4358 0.4391 0.75

* Percentage difference = 100 [PSSA/complete — 1].
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of the results indicates that there are negligible differences between the species being
treated by differential or algebraic equations. The most important comparison,
however, is the influence of the use of the approximation on the predicted concen-
trations, ¢,. Even after 120 minutes the maximum error shown in Table VII is less
than 0.5%. The conclusion reached from an analysis of these and other test cases was
that the species identified from the eigenvalue analysis could be treated in steady state
with minimal effects on the predicted concentrations of the primary species, c,.

Once the concentration vector has been partitioned into stiff and nonstiff
components, there are a variety of algorithms that can take advantage of the problem
structure. For exampie, Robertson [85] utilized the division in the iterations involved
with the use of implicit multistep formulas. During any single step, by fixing the part
of the iteration matrix corresponding to the nonstiff components and only updating
the elements arising from the transients, significant computational economies were
achieved. Techniques that achieve these efficiencies without prior knowledge about
the problem structure are relatively rare. Enright and Kamel [86] have developed a
general purpose computer code for systems where the stiffness is due to a few
compornents of a large system.

One other approach for minimizing the influence of stiffness is to choose the initial
conditions for ¢, so that the complete system does not have the initial transient
behavior. While it is extremely difficult to develop a general theory some initial steps
in this direction have been made by Watkins [87] and Lambert [88]. The approach
of Watkins [87] is particularly relevant because his algorithm has been developed to
set initial conditions for transport problems. Unfortunately the cost of the proposed
iteration scheme, when applied to systems of the size encountered in this study, is
likely to be prohibitive. Kreiss {78] has addressed a similar situation in an attempt to
set the initial conditions in a way that would eliminate the rapidly osciilating terms
associated with large, purely imaginary eigenvalues. At this time there is no
satisfactory means for a priori specification of the initial values for ¢, that will
remove or reduce the stiffness of systems of the type considered here.

9.3. Asymprotic Integration Scheme

In the previous section the size and stiffness of the reaction mechanism was
reduced by employing the pseudo steady state approximation. Even with these
changes it was still not feasibie to economically use the EPISODE program in the
solution of the full atmospheric diffusion equation. A variety of other alternatives
were investigated in an attempt to significantly lower the computational cost but
without substantially compromising the solution accuracy. The trapezoidal rule was
rejected because of the overheads associated with the matrix decompositions. Even
with the use of sparse matrix packages and infrequent Jacobian updating, the cost of
Newton-type schemes was still excessive. The particular approach finally decided
upon with the asymptotic integration method of Young and Boris {89, 90|. Designed
to solve the reaction kinetics embedded in very large hydrodynamic problems, the
method is self starting, extremely fast and requires minimal storage; as such. it
satisfies most of the selection criteria discussed above.
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A particularly attractive feature of the method is that it has a very low start up
overhead because all that is required to begin a new integration step are the current
values of the variables and the derivatives. A second-order predictor—corrector
scheme that takes special notice of those equations determined at the beginning of the
step to be stiff is employed to continue the integration process. When applied to stiff
equations, the method is suited to situations where the solution is slowly changing or
nearly asymptotic yet the time constants are prohibitively small. This occurs when
the formation and loss rates are large, nearly equal, and there is strong coupling
among the equations. Thus, the stiff equations are treated with a very stable method
that damps out the small oscillations caused by the very small time constants.

The predictor—corrector algorithm provides enough information to choose the
subsequent timestep size once convergence has been achieved. For efficiency, an
initial timestep is chosen that approximates the timestep that will be determined after
convergence of the predictor—corrector scheme. This initial trial timestep is chosen
independently of the stiffness criterion and is determined such that none of the
variables will change by more than a prescribed amount. If the formation rate is
much larger than the loss rate, it is reasonable to assume that a, and b, will remain
relatively constant for large changes in c,. Often the initial change in ¢, may be large
enough to equilibrate the formation and loss rates. Thus the initial trial timestep 4r,
is chosen in two ways:

dr=gmn [}—] (74)
or if a; > b,c; then
min 1
Ar=g™ [F] (75)

The second criterion is needed when the initial conditions, for some species, are
unknown or set to zero. Here ¢ is a scale factor, the selection of which is discussed
shortly. The timestep dictated by (74) may be larger than some or all of the
equilibrium times, in which case the corresponding equations would be classified as
stiff. Nevertheless, when solved by the asymptotic method, this timestep ensures that
accuracy can be maintained. When a stiff equation is close to equilibrium, the
changes in the functional values over the timestep will be small even though the
adjustment rate toward equilibrium can be very much shorter than the timestep.
When the stiff equation is far from a dynamic equilibrium, the timestep should be
scaled down proportionally to the equilibrium time to ensure that the transition to
equilibrium will be followed accurately. This readjustment, because of the very fast
rate, generally takes place rapidly after which much longer timesteps may be taken.

After a timestep has been chosen, all of the equations are separated into two
classes, stiff and nonstiff, according to the values of the b.. The two types of
equations are then integrated by separate predictor—corrector schemes. A simple
asymptotic formula is used for those equations determined to be stiff.
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The predictor part of the step is performed as follows:

Nonstiff:  ¢(1) = ¢,(0) + 4¢/,(0), (76)
. _ 47(0)
Stiff: C,—(l) ——C,-(O) +—1—’;m, (77)

where f(0) =f;[1(0), ¢,(0)] and c,(k) is the kth iterated value of ¢;, or an approx-
imation to ¢;[#(0) + 4r]. The zeroth iteration, c/(0), is the initial value at ¢(0) and
c(1) is the result of the predictor step. Also note that fi(k) =f;[¢(0) + 47, c;(k)]. The
corrector formulas are:

Nonstiff: ¢ (k + 1) = c,(0) + 42—1 [£0) +£1k)], (78)

24t[a (k) — b40) c{0) +£(0)]

SHiff: ek + 1) = el0) + — o O+ 5.0

(79)

By comparing c,(k + 1) with ¢ (k) on successive iterations using the relative error
criterion ¢ to satisfy

ledk + 1) —ci(k)|

the convergence of each of the individual equations can be determined. As applied in
the present application, ¢ is typically O(10~?) and if the formation and loss rates are
nearly equal ¢ is scaled down slightly, to allow quicker convergence for equations
that are nearly in equilibrium.

In practice, ¢; is constrained by a minimum value when ¢; is decaying exponen-
tially toward zero. This lower bound must be selected to insure that its value in no
way affects the physics but yet decouples the equation from accurate integration.
Decoupling is accomplished by avoiding applying (80) to all equations that have
decayed to values corresponding to their lower bounds. Convergence for these
equations is then trivial and the function no longer affects the size of the timestep.
For equations that are decaying exponentially to zero, with time constants that are
small enough to control the timestep, it is important for efficiency reasons to
decouple these equaticns at the largest lower bound possible.

In practical application the maximum solution speed is realized by keeping the
allowed number of corrector iterations small, typically one or two. If satisfactory
convergence of all equations has not been obtained before or during the last iteration,
the step is started over with a smailer timestep. By keeping the maximum number of
iterations small, a minimum amount of time is wasted on an unstable or noncon-
vergent step. When nonconvergence is encountered, it is more efficient to reduce the
timestep sharply (a factor of 2 or 3). On the other hand, when increasing the
timestep, as, for example, when convergence is achieved on the first or second
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iteration, it is best to increase only by 5-10% each step. The asymptotic integration
scheme was compared against the program EPISODE [80,81] to evaluate the
characteristics of the algorithm when applied to the photochemical reaction
mechanism. For all EPISODE calculations semi-relative error control was used with
a convergence tolerance of 0.0001. The starting and maximum step sizes were set to
107" and 10 minutes, respectively.

Both programs were exercised over a wide range of initial conditions, pseudo
steady state approximations, photolysis rates and diurnal cycles. Two features were
apparent in all the tests, and they are illustrated in Table VIII. First, and perhaps
most important, is that there were negligible differences in the predictions of both
schemes over solution steps comparable to the maximum expected transport times.
For example, after 30 minutes the maximum discrepancy between the two schemes
for the species NO, NO,, and O, was 0(0.2%).

The most striking difference between the two schemes is the high start up costs
associated with the EPISODE algorithm. During the initial 30 minutes there is a
factor of 7 difference in the computation time. Once started. however, the incremental
cost, per time interval, of using EPISODE becomes successively smaller. From a

TABLE VIII

Comparison of Start Up Times for EPISODE and Hybrid Solution
Scheme for Typical Smog Chamber Experiment

Concentration . Computer time (ms)
(parts-per-million by volume) per 30 minute step
Time Species Episode Hybrid Episode Hybrid
(min) solver
30 NO 0.0567 0.0567 (0.00)* 1014 152
NO, 0.4070 0.4077 (0.17)
0, 0.0834 0.0832 (—0.24)
60 NO 0.0202 0.0203 (0.50) 175 104
NO, 0.3889 0.3914 (0.64)
(o1 0.2191 0.2194 (0.14)
90 NO 0.0110 0.0107 (—2.73) 79 g1
NO, 0.3329 0.3290 (—1.17)
0O, 0.3383 0.3450 (1.98)
120 NO 0.0066 0.0062 (—6.06) 47 70
NO, 0.2652 0.2557 (—3.58)
0O, 0.4391 0.4497 (2.41)
1315 ms 407 ms

* Percentage  difference  between  EPISODE and Hybrid  solution  technique = 100
[Hybrid/EPISODE — 1].
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practical point of view, considering the short integration intervals in an operator
spiitting solution, the asymptotic scheme is clearly preferable to the EPISODE
algorithm for the present application.

9.4. Implementation of Asymptotic Integration Scheme

Using the operator splitting procedures described earlier, (9) can be written in the
form
dc;

Transport e L(x,)c;, (81)

Chemistry % = FAC1 s €0 1), (82)

IfT,, T,, T, and C, are the numerical approximations to the transport and chemistry
operators then a complete solution can be obtained from the sequence

=T, T,T,C(24) T, T, T, e}, (83)

where C_ symbolically denotes the means of solving (82) at each of the grid points
given a set of initial conditions. Most of the computer time required for each cycle
(83) is consumed by the chemical solution C.. Two advantages of operator splitting
are apparent, the chemistry is decoupled from the transport and it can be solved for a
period 24¢. This latter feature is particularly important because most of the overhead
associated with solving (82) occurs at the start of each initial value problem; subse-
quent time increments can be obtained at minimal expense.

The actual sequence of operations used to obtain a solution of (83) is as follows.
Solve

a—; =L, c¥, (84)
O Ler, (85)
6cgt** Lerws, (86)
on the interval "~ ! r 17,
—aa%:f,-(cl,..., o 1) (87)

on the interval :"~' <t """, and then solve the system (84)—(86) in the reverse
order, i.e, in z, y, and x directions. The initial conditions for each of the problems
(84)—(86) are: (1" ) =c 1" "), cFFE T ) = (M), cFFE(E" ) = ¢F*(¢") and for
(87) c,(t" ") = cFH*(").
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Unfortunately, there is little guidance in the literature relevant to establishing a
priori bounds on the maximum value of A:. Within the airshed model it has been
observed that the convergence of the sequence (83), during the photochemically
active daylight hours, i1s controlled more by the rate of vertical turbulent mixing than
by the Courant limit of the horizontal advection schemes. As a result of considerable
experimentation with successively smaller time steps it was found that if 24r was
limited to be less than 10 minutes, the predicted results were comparable to cases in
which the two-dimensional coupled problem (9) was solved directly. At night when
there is little or no chemical activity, the chemical time steps are controlled by the
stability limits of the advection schemes. The total computer time required to
simulate the concentration dynamics of 15 species at 3000 grid points for a 24-hour
period is O(50 minutes) on an IBM 370/168. The interested reader is referred to
McRae er al. [91] for a description of the air pollution model.

10. CONCLUSIONS

In this paper, a variety of numerical methods were studied in order to identify a
solution scheme for the atmospheric diffusion equation. As a result of this
investigation, a composite technique was developed in which operator-splitting was
first used to segment the three-dimensional system of equations into a sequence of
one-dimensional problems.- Each transport step was further simplified to three basic
components: an advection step, application of a nonlinear filter and finally a diffusion
step. A Galerkin, linear finite element scheme was adopted for the critical advection
step. The results of numerous numerical experiments indicate that this algorithm,
together with the filter step, preserves extreme values, gradients, total mass and mean
square concentration. The solution of the chemical kinetics component is carried out
by a second-order predictor, iterated corrector technique, in combination with an
asymptotic treatment of the stiff components of the problem [90, 91|. Computational
economies are achieved by implementation of the pseudo steady state approximation.

APPENDIX: NoTATION

a(X, 1), b(X,t) Coefficients associated with boundary conditions (3)

a; Production rate for species i, i=1,2,.,p

A An r X r matrix representing the discrete approximation to L at r
computational grid points. (A, is the discrete representation of L)

b; First-order coefficient for removal rate of species i, i =1, 2,...,p

B Linear boundary operator

B,H,M,P,Q,S Matrices of dimension r X r associated with different spatial

discretization techniques
e, Concentration vector of nonstiff components
c(k) kth iterate of c;



c(X, 1), cx, 1)

cx, )

Greek Symbols
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Concentrations of species { in the physical and computational
domains; i=1, 2,...,p

Concentration vector of species i at » computational points ¢ (x, ) =
(x5 1) 7=1,2,...,1)

Concentration vector of stiff components

Courant number

Symbol representing solution of the chemical kinetics

Chemical formation (or depletion) rate of species i f, =
(filey (x5 Dpes (X5 1))s =1, 2,00, 7)

Mapping function that transforms points from X into x

Species specific boundary condition coefficient

Topographic surface (lower boundary of region)

Time varying upper surface of region

Unit matrix of dimension » X r

Jacobian matrix with elements ¢f,/dc;, i,j=1,2,..,p

Rate constant for reaction /

Coefficient in noise filter

Diffusion coefficient associated with noise filter

Second-order turbulent eddy diffusion tensor (usually a diagonal
matrix with elements X, , K, , K..). In the computational domain
K, are the values of K, at each of the r grid points.
Three-dimensional, semi-linear, elliptic differential operator
(L., L,,L, are the components in x, y and z directions).

Stiffness ratio

Radial coordinate for Crowley problem

Time

Extent of time interval for solution

Composite transport operator (7 is the transport operator for the
Jth direction)

Velocity field in physical domain u = (u, v, w)

Velocity field in computational domain U = (u;; j = 1,2,...,r)
Velocity field in transformed domain V = (u, v, W)

Point in computational domain x = (x, y, z) € 2,

Point in physical domain X = (X, Y, Z) € £,

a,f Time varying coefficients associated with the concentration and velocity
distributions employed in the Galerkin formulation

] Discretization unit (either finite element or grid size)

€ Relative error criterion

4t Basic time step of atmospheric diffusion equation

At Time step for solution of the chemical kinetics

Ax  Size of computational grid element

AH =HX,Y,t)—h(X,Y)
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VYolume to width ratio for test wave forms or angular coordinate
An arbitrary parameter with 1 > 0

Eigenvalue of Jacobian matrix J, i=1,2,..,p

Normal direction to 62

Material flux = K (8e/8x) — Uc

Basis functions for Galerkin formulation

Filter function variable (0, 1)

Fourier frequency for test wave forms and angular velocity for Crowley
problem

Time invariant computational domain

Time varying physical domain (£2, initial extent)

Domain boundary

Sub- and Superscripts

It T W N

h\Q’GstNN‘

Advective transport step

Indicates computational domain

Diffusive transport step or nonstiff component of concentration vector

Grid point subscript for testing sign changes during filter application

Species index

Index to denote coordinate direction (x = 1, y =2, z = 3) or computational grid
point (j=1,2,.,r)

Iteration counter during one time step

Domain of final filter application (number of grid points)

Half width of enveloping interval for testing slope change in filtering scheme
Time level

Initial conditions

Number of chemical species

Spatial integration index for Galerkin formulation

Number of computational grid points

Spatial integration index for Galerkin formulation or stiff component of concen-
tration vector
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CHAPTER 10

SENSITIVITY AND UNCERTAINTY ANALYSIS OF
URBAN SCALE AIR POLLUTION MODELS

10.1 Introduction

When complex systems are described by mathematical models a
natural question arises: what are the influences of uncertainties in
the characterization of phvsical processes? While a variety of means
can be employed to answer the question considerable insight can often
be gained from formal studies of the effects of parameter variations.
Such sensitivity analyses can provide a direct means for revealing how
the predictions vary as a result of changes in model or input variables.
Information derived from these investigations is useful for defining
1imits of valid applications and identifying those areas which might

require additional development work.

This chapter presents a technique, the Fourier Amplitude Sensitivity
Test (FAST), which can be used to assess the relative influence of
parameter variations on the model predictions. A major advantage of this
procedure is that, unlike conventional methods, it readily accommodates
arbitrarily large variations in the parameters. This feature is exploited
in two practical applications. One exzample involves a combined sensi-
tivity/uncertainty analysis of a photochemical reaction mechanism for
the polluted troposphere and the other, a study of a simplified form of
the atmospheric diffusion equation. Both cases, and a description of the
computational procedure, have been previously published as Koda et al.
(1979b), Falls et al. (1979) and McRae and Tilden (1980); these afticles

form sections of this chapter.
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10.2 Methods for Sensitivity Analysis of Mathematical Models

An inevitable consequence of using mathematical models to describe
complex systems is that some approximations are involved. These
uncertainties arise either from the characterization of the physical
processes or from the measurement errors inherent in model input variables.
Leaving aside the conceptual question of model validity, the essential
problem in sensitivity analysis is to examine the changes in system
outputs which result from variations in either the input or structural
parameters. This section presents a brief literature survey of different
sensitivity analysis methods. While some of the techniques are well
known in control theory (Cruz, 1973; Tomovic, 1963; Tomovic and
Vucobratovic, 1972; and Frank, 1978) they have not, as yet, been ex-
tensively employed in atmospheric modeling. Gelinas and Vajk (1978)

have, however, examined the suitability of some methods for air quality

In order to provide a framework for the survey consider a general

system of the form

F(u,k) = 0 (10.1)

where F is a general algebraic or differential operator, u is a vector
of n output variables and k a set of m parameters. Given such a model
there are four basic factors which need to be considered when selecting
a method or an approach for performing a sensitivity analysis of a model
system. The issues are: the extent of the parameter domain, the
sensitivity measure or criterion, the combined roles of parameter sen-

sitivity and uncertainty, and finally, the computational cost.
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From a practical point of view a dominant consideration in
selecting a sensitivity analysis method is the computational cost. When
comparing different techniques it is important to keep in mind two basic
considerations: one is simply the number of times that the model must be
solved to obtain the desired sensitivity information. The second factor
is the amount of time required to implement the particular technique. In
many situations it is this latter factor which has a major influence on
the selection process. For example some techniques do mot require ex-
tensive programming beyond that needed to solve the basic model while
others can require considerable additional effort on the part of the
investigator. While the cost of each method can be expressed in terms
of the number of required solutions the final choice will often be dic-
tated by the complexity of the basic system being analysed. Gelinas and
Vajk (1978) have carried out an extensive study of the expected cost of
applying different sensitivity analysis methods to some different mathe—

matical models of environmental processes.

Perhaps the most fundamental constraint which dictates the choice
of a sensitivity analysis method is the extent of parameter variations
to be considered. All the feasible values of the parameter vector k
define the parameter space. Varying the parameters over their full domain
produces the m-dimensional surface u(k). A typical example is depicted
in Figure 10.1 where the response of one model output, ui(t), to varia-
tions in k, is shown. In this case the extent of parameter space 1is
defined by the upper and lower limits for each of the variables kl and

kZ' The point Q on the solution surface represents the magnitude of ug
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Domain of Uncertainty
in the Parameters {k}

he
>
<~

FIGURE 10.1

Schematic Representation of the Parameter Space k
and the Response Surface for State Variable ui(t;E)
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resulting from the parameter combination (Ei,ié). These nominal values

typically represent the best a priori estimates of the parameters.

The ultimate goal‘of any sensitivity analysis is to determine the
form of the system output resulting from the parameter variations. Since
most models will require numerical solution, the outputs needed to define
the response surface will only be available for a finite set of para-
meter combinations. Given this situation the basic problem then becomes
how to sample the parameter space with sufficient regularity to adequately
characterize u(k). An analysis which accounts for simultaneous varia-
tions in all the parameters over their full range of uncertainties is
called a global method. Conversely, local analyses attempt to infer the
shape or value of the response surface at a particular point. The
limitations of local approaches are readily apparent, particularly if the
model is highly nonlinear or the range of parameter variatioms is large.
A typical case is shown in Figure 10.2. For small variations in'E the
tangent plane approximation differs from the actual surface by only a
small amount. Unfortunately this simplification does not contain useful
information on the behavior of a u away from:E. This example highlights
a critical limitation of local methods when they are applied to problems
which involve large uncertainties in the parameters. For example, a
variable to which the model predictions are not especially sensitive at
say E, may have such a large range of uncertainty that, when all possible
variations are considered, its influence on the results may be quite
large. Information of this type is very useful in the design of ex-

perimental programs because more effort can be devoted to elucidating



403

\
LINEAR

‘~\\H\\\\~

} NONLINEAR

ul k)

x|
i

FIGURE 10.2

Linear and Nonlinear Sensitivity Analysis
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the important phenomena and eliminating potentially unproductive measure-

ments.

So far in the discussion all values of k have been considered to
be equally likely; however, in practice, the parameters often have non-
uniform probability distributions. While the response surface, u(k), is
independent of all assumptions about the likely parameter combinations,
the expected value or mean sensitivity, <u(k)>, depends on both the
probability distribution for k and the form of the model. A sensitivity
analysis then refers to the influence of parameter variations on the
model predictions whereas a combined sensitivity/uncertainty analysis
considers the additional factor of the parameter distributions. Regard-
less of refinements in knowledge of parameter accuracy the global
sensitivity of the model remains the same. In Figure 10.1 the probability
distributions assocociated with kl and kz are independent and denoted by

p(kl) and p(kz). By considering k to be a random vector with probability

density P(k) the ensemble mean sensitivity can be expressed in the form

- .2
<u (k)> f...fui(kl,...,km) P(ky,eesk ) dkp,een,dk (10.2)
K

In general (12.2) does not correspond to the solution obtained when the
parameters are set to their nominal values E. A variety of other sensi-
tivity measures are available for assessing the system performance. Some
of the more common criteria are listed below and in Table 10.1; further
details can be found in Frank (1978). Perhaps the most elementary criter-—
ion 1s the change in system output, ¢u, which results from an arbitrary

variation, ¢k, in the parameters away from some nominal value k i.e.
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TARLE 10.1

Summary of Sensitivity Measures

SENSITIVITY MEASURE

DEFINITION

Response from arbitrary parameter

variation k

Normalized Response

Local Gradient Approximation

Normalized Gradient

Average Response

Expected Value

Variance

Extrema

ulk + k) - u(®

E:
Su,
D, = = : i=i,2,...,n
i _
Ui(k)
aui
Su = = =
u [S}ék ; S Py
J
k. du
o3 1
13 —_ 3k
u, (k)
[..[ v dk
- JJ *+
u. (k) =

<u (k)> = f‘l‘(fui@)P@dg

T = <, 5 - <u, (0>

max [ui(k)], min[(ui(k)]
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Su = uCk+ k) ~ ulk) (10-3)
This difference measure is often expressed in the normalized form

Su, u. (e + 8k
D, = GO T ® -1 (10.4)

If the parameters are varied one at a time then (10.4) is given by

u, (k + 8k.)

= =+t J _
Dij Di(ékj) . ®) 1 (20.5)

i

Both of these criteria are essentially point estimates. If a sufficient-
ly large number of k combinations are considered then it is possible

to develop estimates of some of the important response statistics,
namely: the mean, variance and extrema of u(k). The extreme values are
often of critical importance in environmental applications. 1In the
interests of computational economy it is desirable to obtain as much
information as possible from each parameter combination. One means is

to extrapolate the results away from the nominal solution E(E). A

wide class of methods can be represented by the form

Su = [S] ok (10.6)

The most simple case corresponds to the well known Taylor series

expansion for which the elements of the matrix [S] are given by

S.. = ; i=1,2,...,n  §=1,2,...,m (10.7)
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Equation (10.7) is often written in the normalized form

= = (10.8)

Methods which neglect the higher order terms in the expansion are
referred to as first order or linear techniques. In space and time
dependent models the linear sensitivities are mcre appropriately defined
in terms of operator or Frechet derivatives.* These derivatives

are linear continuocus and have the usual properties of the classical
differentials of functions of one or more variables. In particular

the chain rule holds (Nashed, 1971). This latter result is extremely

useful in practical applications.

Once the basic model has been formulated and an appropriate
sensitivity measure identified the next step is to actually solve the
sensitivity problem. As noted previously there are two basic approaches:

local or global techniques. 1In order to illustrate how local methods

%

- Consider a mapping F:X - Y where both X and Y are complete, normed
linear spaces. Given that xe X, then if a bounded linear map, F',
exists such that

lwr 37\ v o bl
. F{x+h) -F{x)-F'{(x)h
Lim ‘|L\_' h) - F{x) - F (Bhiiy

[al]~o0 HhHX

then F is said to be Frechet differentiable at x and F'(x) is the Frechet
derivative of F at x. Under certain conditions the continuous, linear
operator F'(x) is represented by the Jacobian matrix at x (Dieudonné ,
1960; Tapia, 1971).
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are applied, consider the following set of ordinary differential equations

and initial conditions.

du
Fu,k) = o - f(u,k) = 0 (10.9)
u(o) = u° (10.10)

A very wide class of practical problems can be described by systems of the
form (10.9-10). The change in u away from some nominal parameter values
E can be expressed, using operator derivatives iIn the form

g du  of du  of

E(a_?"”ai(_af)"a__izo " (10.11)

or more compactly as the matrix differential equation

(2] = [3]12] + [B] (10.12)

where
. _ Bui i=1,2,...,n (10.13)
ij Bkj j=1,2,...,m
Bfi i=1,2,...,n (10.14)
Ji5 T 5a — = i=1,2 n
g w@® k] e
. _ Bfi i=1,2,...,n (10.15)
ij ok. j=1,2,...,m

3 fi[g@) ,k]

A typical column of [Z], defined by Bui/akj; i=1,2,...,n, denotes the
sensitivity of u with respect to the jth parameter. The initial conditions

for (10.12) are given by [Z(0)] = [o] unless any ui(o) are included in E
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in which case the appropriate elements of [Z] are set to one. Because
there is no direct coupling in (10.12) each of the m vector differential

equations can be solved independently.

There is a variety of ways to obtain the desired sensitivity
informatien. The implest involves a direct solution of the coupled
systems of n(mtl) ordinary differential equatioms (10.9-10 and 19.12).
This method was used by Dickinson and Gelinas (1976) and Atherton et al.
(1975). Operationally it is sometimes more convenient to consider the
parameters one at a time; if this is done then the number of required
solutions increases to Znm. This number can be reduced, at some loss
of numerical accuracy, to n(mt+l) if the nominal solution Q(E,tp),
p=1,2,... are retained and used for constructing interpolated approxi-
mations to the u(k,t) needed in the evaluation of (10.14 and 10.15).
While the three approaches produce similar results they can involve

led

up
3 . 3
system, O[m(2n)~] for the one parameter at a time case and O0[(mt+l)n"]
for the interpolated solution. Since the equations of interest are
usually stiff, and m(>n) is in general quite large, the above procedures
can be quite expensive. Another approach, which is the focus of work by

Hwang et al. (1978), Dougherty et al. (1979) and Hwang and Rabitz (1979),
is to make use of the associated Green's function matrix.
An nxn Green's function matrix {K(t,t)] can be constructed which
satisfies
(_;.1; [K(t,o)] = [JTK(E,T)T = [0] ;5 & >« (10.16)

with
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[R(t,t)] = I (10.17)

The sensitivity information is then given by the following set of inte-
grals (Hwang et al., 1978)

t

[Z()]1 = [K(t,0)]1[Z2(0)] +./ﬁ[K(t,T)][B(T)]dT (10.18)
o
In practice [K] is determined by first solving (10.9-10) to obtain
g(g,tp) p=1,2,..., at an adequate number of grid points so that [J(t)]
can be determined by interpolatiomn. Operationally it is more convenient to

solve the adjoint system (10.19-20) backwards in time.

d[R*(t,t)]

it + [K*(T,t)]1[I3()] = [0] 5 t<t (10.19)
[R&(r,t)] = 1 (10.20)

with
[K*&(t,t)] = [R(t,1)] (10.21)

The major advantage of the adjoint formulation is that the sensitivity
integrals (10.18) can be more easily evaluated row by row as functions of
T at a fixed time t. Another good feature of the Green's function
approach is that the calculations needed to evaluate_g(g,tp) and [K*(t,t)]
are independent of the number of parameters m. If m > n this can result

in a very large savings in computational time over the direct methods.
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In passing it is important to emphasize that the procedure producers a
local approximation to the system sensitivity u(k). Section 10.3 presents

a procedure valid for global analyses.

The remaining class of methods are global sensitivity analysis
techniques in which the major concern is to characterize the response
surface u(k) over the full range of parameter variations. 1In carrying
out such analyses, the basic consideration to keep in mind is to minimize
the number of model solutions. Conceptually the simplest approach is
to solve the system repeatedly, varying one parameter at a time. Without
careful prescreening this "brute force" approach can become prohibitively
expensive. For example consider a model system of m parameters and r
different values for each kj. The systematic evaluation would require
O(mr) solutions and even relatively small values of m could render the
procedure impractical. The key to a successful global sensitivity method
is then to devise an economical means for sampling the parameter space.
Similar problems arise in locating starting points for optimization

algorithms or in the evaluation of multi-dimensional integrals.

Perhaps the most well known sampling procedure is the Monte-Carlo
method. In this procedure the parameter combinations are selected at
random. A random number generator is used to select values of the
parameters from the k space which are then used to evaluate u(k). What
is often not realized is that the value of Monte-Carlo methods is not the
randomness of the sampling but the resulting equidistribution properties
of the sets of points in the parameter space. Once it is recognized that
the main goal of a Monte-Carlo procedure is to produce a uniform distri-

bution of points in the parameter space, then pattern search methods
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become a viable global sensitivity method. The brute force method for
distributing points is far from optimal. Consider the two-dimensional
cases shown in Figure 10.3 which correspond to N=16, r=4, and m=2. If
u(kl,kz) depends strongly on one of the variables the first distribution
(Figure 10.3a) yields only 4 essentially different values each repeated
four times while the second set produces 16 values of either ui(kl) or
ui(kZ)' An algorithm which generates sequences of points that uniformly
fill the parameter space is described in Sobol (1979). Aird and Rice
(1977) compared two systematic search procedures with the standard random
assignment technique and found that the pattern methods consistently per-
formed better than the Monte-Carlo procedure. Unfortunately pattern and
Monte—Carlo methods are not well suited to non-rectangular parameter spaces

because of difficulties associated with locating points inside the boundaries.

One major advantage of the Monte-Carlo procedure is that it can be
readily adapted to situations in which one or more of the parameters have
known distributions. Stolarski et al. (1978) used a Monte-Carlo procedure
to study the propagation of reaction rate uncertainties in the
strospheric ozone depletion model of Rundel et al. (1978). The uncertain
rate constants were assumed to be lognormally distributed about the mean
measured values. The computational procedure adopted in their work was
to continue to sample from the parameter space until the model output
statistics stabilized. For the criteria established by Stolarski et al.
(1978) 2000 separate combinations were required to assess the effects
of fifty-five parameters. Freeze (1975) used a similar approach in a

study of two ground water flow problems and in addition considered the



413

k
. A
1
] [ ® [ ]
[ ] [ [ ] [ ]
[ ] ® [ ] [ ]
[ [ 3 [ [ ]
0 .
0 (a) !
ky A
1
[ ]
[ )
[ ]
®
@
®
]
®
®
[ ]
®
®
®
-]
[ ]
®
0 =
0 1

(b)

FIGURE 10.3

Systematic Search Patterns of Parameter Space



414

effects of parameter coupling by using multivariate distributions. Both
studies encountered the problem of developing a priori estimates of the

number of trials required to produce stable results.

An alternative method for global sensitivity analyses, and the
focus of Section 10.3, is the Fourier Amplitude Sensitivity Test (FAST)
introduced by Cukier et al. (1973). The essence of this procedure is to
assign periodic functions of a new variable, s, to each of the parameters.
Under certain conditions each new value of s defines a unique parameter
combination k(s), along a search curve which can be made to pass arbit-
rarily close to any point in the k space (Weyl, 1938). By sampling u(k)
along the search curve and performing a discrete Fourier analysis it is
possible to determine the contribution of individual parameters to the

global sensitivity of the model (Beauchamp and Yuen, 1979).

In this section the basic issues involved in selecting sensitivity
analysis methods have been discussed. Since for some of the techniques
there is an extensive literature Figures 10.4 and 10.5 summarize the
results of a survey directed at identifying representative treatments of
local and global methods. For details of particular applications the
reader is referred to the original papers. Subsequent sections of this
chapter are directed at developing and applying global methods to

components of the atmospheric diffusion equation.
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GLOBAL SENSITIVITY ANALYSIS METHODS

!

|

PATTERN METHODS

Aird and Rice (1977)
Sobol (1979)

troud (1971)
Dodge and Hecht (1975)

Mean
Variance
Extrema

1
MONTE CARLO METHODS

Freeze (1975)
Stolarski et al.

Leith (1975)

Mean
Variance
Extrema

FIGURE 10.4

(1978)

FAST METHODS

Boni and Penner (1976)

Cukier et al. (1973)
Schaibly et al. (1973)
Cukier et al. {(1975)
Cukier et al. (1978)
Levine (1975)

Falls et al. (1979)
Koda et al. (1979a,b)

McRae and Tilden (1980)

Fourier Amplitudes
Partial Variances
Mean

Variance

Extrema

Parameter Ranking

Survey of Global Sensitivity Analysis Methods
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LOCAL SENSITIVITY ANALYSIS METHODS

TAYLOR SERIES EXPANSION SENSITIVITY EQUATION

Atherton et al. (1975)
Keller (1964)

Tang and Pinder (1977, 1979)
Dunker (1980) | ]

Coupled Solution of Adjoint (Green's Function)
System and Sensitivity Solution of
Equations Sensitivity Equation
Frank (1978) Hwang et al. (1978)
Tomovic (1963) Dougherty et al. (1979)
Dickinson and Gelinas (1976) Hwang and Rabitz (1979)

Enoc and Rabitz (1979)
Tang and Pinder (1977, 1979)
Tomovic and Vucobratovic (1972)

Sensitivity Measures

Mean Local Perturbation Local Perturbation
Variance
Local Perturbation

FIGURE 10.5

Survey of Local Sensitivity Analysis Methods
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10.3 Automatic Sensitivity Analysis of Kinetic Mechanisms

(Reprinted from Int. Journal of Chemical Kinetics, 11, 427-444.)
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Automatic Sensitivity Analysis of Kinetic
Mechanisms

MASATO KODA, GREGORY J. MCRAE, and JOHN H.
SEINFELD

Department of Chemical Engineering, California Institute of Technology, Pasadena,
California 91125

Abstract

An algorithm for the automatic sensitivity analysis of kinetic mechanisms based on the
Fourier amplitude sensitivity test (FAST) method of Shuler and co-workers is reported. The
algorithm computes a measure of the relative sensitivity of each concentration to each pa-
rameter of interest, such as rate constants, Arrhenius parameters, stoichiometric coefficients,
and initial concentrations. Arbitrary variations in the magnitude of the parameters are al-
lowable. The algorithm is illustrated for the simple example of computing the sensitivity
of the concentration of species A to variation of the two Arrhenius parameters for the hypo-
thetical reaction A + A —.

Introduction

A variety of chemical phenomena are described by lengthy and complex
reaction mechanisms. It is often desirable to determine the effect of
uncertainties in rate constants and other parameters on the predictions
of the mechanism and to ascertain which parameters are most influential.
When a measure of the sensitivity of the concentrations to variations of a
parameter is combined in an appropriate manner with a measure of the
degree of uncertainty in the parameter’s value, one may then determine
which parameters, through both their sensitivity and uncertainty, have the
most influence on the predicted concentrations.

Conceptually the simplest approach to a sensitivity analysis is to solve
the system repeatedly while varying one parameter at a time and holding
the others fixed. This type of analysis soon becomes impractical as the
number of parameters subject to variation increases. Most of the theories
for sensitivity analysis of sets of differential equations containing param-
eters are linearized ones, valid strictly only for small variations of the pa-
rameter value [1]. Recently a new sensitivity analysis method has been
developed by Shuler and co-workers [2-5] that is not restricted to small
parameter variations. The method is particularly attractive for chemical
kinetics applications because order of magnitude uncertainties in rate
constant values are not uncommon.

International Journal of Chemical Kinetics, Vol. X1, 427-444 (1979)
© 1979 John Wiley & Sons, Inc. 0538-8066/79/0011-0427%01.00
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The object of this paper is to report a computational method for the
automatic sensitivity analysis of systems of differential equations based
on the Fourier amplitude sensitivity test (FAST) method of Shuler and
co-workers [2-5]. The computational method processes the concentra-
tion-time histories from integration of the system to produce a measure
of the sensitivity of each concentration to each parameter. An arbitrary
choice of the range of variation of each parameter is possible. The math-
ematical foundation of the FAST method has been described in detail
previously [5]. Thus we present here only a concise discussion of those
elements of the method necessary for the understanding and implemen-
tation of the computational algorithm. We have extended the basis of the
FAST method in one respect; that is, we have developed a way to treat
parameters that are constrained by a relationship of the form H (B, ko, =,
Em) £ 0. Such a constraint is important in chemical kinetics applications.
Parameters in a chemical reaction mechanism are frequently related to each
other. For example, the ratio of two rate constants k;/k; may be fixed with
E; or k; subject to individual uncertainty. Also, if a species may decompose
by two paths, the fractional occurrences of which are k1 and ks, one may
wish to examine the sensitivity of the mechanism’s predictions to k, and
ks, subject to the constraint that ky + k, = 1.

In the next section we summarize the key elements of the FAST method.
The computation of the partial variances, the basic sensitivity measure,
is then outlined, followed by a description of the practical implementation
of the method. Finally, we illustrate its application in the case of a single
reaction,

Mathematical Basis of the FAST Method

We consider a system described by the set of ordinary differential
equations

du(t)
(1) I F(u,k)
(2) u(0) = uy

where u(t) is the n-dimensional vector of state variables (concentrations)
and k is the m-dimensional vector of parameters (rate constants, Arrhenius
parameters, stoichiometric coefficients, etc.) We assume that eq. (1) can
be solved numerically subject to the initial condition of eq. (2) to give u(t)
for any choice of k.

We are interested in determining the sensitivity of each concentration
u;,1 =1,2, - n,tovariation of each parameter k;,j =1,2,-- m. We con-
sider the parameter vector k to be a random vector with probability density
function P(k). In reality the k; are not, of course, random variables.
However, their precise values are uncertain and it is advantageous to treat
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them as if they were random variables with a presumed distribution for the
purpose of computing the sensitivities. If the k; are random variables, then
the u; resulting from the solution of eq. (1) are also random variables. The
(ensemble) mean value of the concentration of species i at any time ¢ is then
given by

(3) (wit))y = S+ Sui(tsky, -+, km)Plky, =<, k) dky -+ - dRr,

where u;(t; k1, -, k) denotes the solution of eq. (1). The key concept of
the FAST method is to convert the m-dimensional integral of eq. (3) into
an equivalent one-dimensional integral.

The method uses the transformations

(4) k; = G,(sin w;s), l=1,2,---,m

where G;, | = 1,2, -, m, are a set of known functions, w;, 1=1,2, -, m,are
a set of frequencies, and s is a scalar variable. By means of this transfor-
mation variations of the m parameters are transformed into variations of
the single scalar variable s. By variation of s over the range —® < s < =,
eq. (4) traces out a space-filling curve in the m-dimensional parameter
space. For a suitable choice of the Gy, which transforms the probability
density P(k) into s space, Weyl [6] demonstrated that

(5) B0 = lim 5= {7 wilti ki), Rr(s)) ds
Tew 2T J-T
is identically equal to {u;(¢)) from eq. (3). Equation (5) is the fundamental
expression in the FAST method for computing the mean value, variance,
and other properties of the concentration u;.

The set of frequencies {w;} should be incommensurate, in that

(6) [Z viw; =0
=1

for an integer set {v,}if and only if v, = 0,{ =1, 2, -, m. If the frequencies
{w;} are, in fact, Incommensurate, the search curve in s space is space-filling
in that it passes arbitrarily close to any point in the m-dimensional pa-
rameter space of k. Unfortunately the set of {w;} used in actual computa-
tion cannot be truly incommensurate. As discussed by Shuler and co-
workers [3-5], we select {w;} as an appropriate set of integer frequencies.
The use of integer frequencies in eq. (4) implies that the parameters kil
=1, 2, -, m, are periodic in s on the finite interval (—=, 7), in which case
eq. (5) becomes

™ T

1 T
(7) () =2—f wi(t; ka(s), - -+, Em(s)) ds
The variance of concentration i is then

(8) o2(t) =i [k, e ) A — T

T
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Henceforth we will replace ;(t) by (u;{¢)), representing the s-space av-
erage. Then &; = (u;) and o7 = (u?) — (u;)2 In addition, for conve-
nience, we will denote u;(t; k1(s), - - -, ki (s)) by u;(z; s).

The evaluation of o7 can be carried out by using the s-space Fourier
coefficients of u;. From Parseval’s theorem we have

1 w . :
@ @) =5 [Tuisas= T aPwe+ B

™ T j=—cn

where the Fourier coefficients A/ and B{" are defined as

(10) AP() = 1 j”r u;(t;s) cos js ds
27!' -7

(11) Bi(t) == 7 wit;s) sinjs ds
271' -

Thus, from egs. (10) and (11),

(12) (ui())2= Af? + B{? = 4*

Using eqs. (9)-(12) we can express the variance o2(t) in terms of the Fourier
coefficients as

(13) o2(t) =2 3 (AP(1)2 + B ()?)
=1

7]
If the Fourier coefficients (10) and (11) are evaluated for the fundamental

frequencies of the transformation (4) or its harmonics, that is, j = pw, p
=1, 2, -, the variance

(14) cu(t)?=2 3 (A9 ()2 + BY) (£)2)
p=1

is the part of the total variance o? that corresponds to the variance of u;
arising from the uncertainty in the /th parameter. The ratio S© = o2/o?
1s the so-called partial variance, which serves as the basic measure of sen-
sitivity for the FAST method. We note that S& is a normalized sensitivity
measure, so that the S!) may be ordered with respect to [ to indicate to
which parameters concentration u; is most sensitive.

We can now summarize the essential elements of the FAST method. The
sensitivity measures are the partial variances S©, i = 1,2, n,1 = 1,2, -,
m. 'The relative magnitudes of the m partial variances for each concen-
tration reflect the relative influence of each of the m parameters on that
concentration. The partial variances are calculated from the ratio of eqs.
(14) and (13), the main computation involved being the evaluation of the
integrals (10) and (11). To evaluate the Fourier coefficients from eqgs. (10)
and (11) requires that the solution of the system of eq. (1) be obtained for
enough values of s so that the integrals in egs. (10) and (11) can be calcu-
lated with sufficient accuracy. Thus, with the parameter values being
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determined by eq. (4), the system of differential equations, eq. (1), is solved
repeatedly for each value of s needed to calculate the Fourier coefficients
in eqs. (10) and (11). Therefore the FAST method only requires that the
set of eq. (1) be solved numerically a certain number of times to produce
the concentrations u;(¢; s) needed to determine the Fourier coefficients
and subsequently the partial variances. By contrast, the common linear-
ized methods frequently require that egs. (1) be differentiated with respect
to the k; to produce an auxiliary set of nm differential equations for the
sensitivity coefficients du;/dk;, i =1,2,~,n,1=1,2,«,m. Thus whereas
the linearized methods require the one-time solution of nm differential
equations (in addition to the original n differential equations), the FAST
method requires a certain number, N, solutions of the original set of n
differential equations. The relative solution times depend, of course, on
the values of n, m, and N;. The choice of N, for the FAST method will be
discussed shortly.

The basic sensitivity measure in the FAST method is the partial variance
S ffl), whereas in the direct, linearized methods the measure is the sensitivity
coefficient du;/dk;. 'The relation between these two measures 1s developed
in Appendix A. Appendix B indicates how the case of correlated param-
eters can be treated.

Exploitation of Symmetry Properties

Before describing the practical implementation of the FAST method it
is worthwhile to reexamine the search curves and the Fourier integrals, egs.
(10) and (11). As discussed in the previous section, the FAST method re-
quires the repeated evaluation of the model system for each parameter
combination. As this generally represents the major component of the
computational cost, it is clearly desirable to minimize the required number
of model solutions. One way to do this is to exploit the symmetry properties
of the search curves. As defined by eq. (4) the search curves have a period
of 2%. By choosing the frequency set {w;} so that it is composed entirely
of odd integers, the functions G;(sin w;s), [ = 1,2, -, m, become symmetric
about +7/2. Consequently the following symmetry properties hold:

u(t; = —s) = u(t;s)
u(t; —= +s) = u(t; —s)
u(t; /2 +s)=u(t;n/2 —s)

u(t; —=/2 +s) = u(t; —v/2 — s)
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Thus egs. (10) and (11) become

r

15) APy ={ % 7 odd

1 2 i )
- f [ui(t; s) + u;(t; — s)] cos Js ds, ] even
1 Jo

-

e B =1 (12 J even
= f [ui(t;s) — u;(t; — s)] sin js ds,  j odd
0

T

Exploitation of the symmetry properties has therefore reduced the range
of integration and, more importantly, the required number of solutions of
the differential equations by one half.

Computation of the Partial Variances

The key sensitivity measure in the FAST method is the partial variance
which, suppressing the dependence on ¢, can be written in the form

an) S8 =7 £ 1A+ 1B

0; p=1
where the amplitudes Af), By, are now determined by the integrals, egs.
(15) and (16). The principal idea behind the partial variance concept of
sensitivity is to examine the output u; (¢; s) and isolate the effects of vari-
ations in parameter k; from the influence of changes in all the other pa-
rameters. When evaluating eq. (17) it is important to recognize, however,
the limitations imposed by the use of integers to define the frequency set
{wi}. Inthe summation, interferences from the effects of parameters other
than «; can lead to meaningless situations in which S%) > 1. The inter-
ference problem is readily illustrated by selecting two arbitrary parameters
ki, kj and their associated frequencies wy, wj. In evaluating the terms
contributing to S{}) two or more values, say r and g, of the harmonic index
p will be encountered such that rw; = qw ;, which in turn implies that
(18) |42+ |BY| 2= |AL| 2+ |BY),|2
This result indicates that the calculation of S¥ is being influenced by terms
arising from variations in the other parameter, w ;. A similar problem arises
when the FAST method is applied numerically. In most circumstances
algebraic complexities or computational costs restrict the availability of
the output u;(t; s) to discrete values of s in the range /2. Unless the
integration points are chosen carefully, aliasing errors can cause interfer-
ences similar to eq. (18). Ordinarily the Fourier amplitudes decrease as
p increases. We expect, therefore, that most of the contributions to the
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summation in eq. (17) should occur with the first few values of p. At this
point the key question to address is simply: how many harmonics can be
included in the summation without causing interference problems.

To answer this question we start by considering the choice of the fre-
quency set {w;} and the number N, of sample points in the s domain used
to approximate the integrals, eqs. (15) and (16). We note first of all that
if we select w; = 1, eq. (17) yields S = 1, which yields no information. The
frequency set {w,;} used in this paper is developed recursively using
(19) ©1 = |

wi=wi_1+dn+1_i, L=2,3,--',n

The Q,, and d,,, tabulated in Cukier and co-workers [4] for n varying from
3 to 50, have been augmented for the two-parameter case with {w;} = 3,5
(Q9 = 8,d; = 2), and for n = 6, w; has been reset to 13. The maximum
frequency wmay is given by w,, if eq. (19) is used to generate the set {uw}.
Also, then the minimum frequency wy, is ;. If the amplitudes A, B could
be determined exactly, the maximum number of terms that can be included
in the summation without the possibility of interferences is simply wmin
— 1. This is another reason for avoiding the choice w; = 1. The simplest
numerical integration procedure for evaluating the amplitudes, which ex-
ploits the symmetry properties of u;(¢; s), requires Ny = Nwmay + 1 (N =
2) uniformly spaced points in the interval £7/2. Several factors influence
the choice of N. The lower limit, N = 2, is imposed by the Nyquist criterion
[7, 5], which indicates that the output u;(s) needs to be sampled at least
twice as often as the highest frequency wma,. For convenience, it is useful
to choose N to be divisible by 2, and so the minimum number of integration
points is 2wmax + 1. The numerical approximation of the Fourier integrals
can be improved by using N > 2 at the expense of increasing the compu-
tational cost. As mentioned above, the numerical approximation of the
Fourier integrals leads to another type of interference problem commonly
called aliasing. These interferences occur when

(20) qup, = pw(mod {Nwmay + 14)

This generally imposes a lower limit to the number of terms that can be
included before interferences occur. The aliasing problem in the compu-
tation of S!) can be minimized if, using the previous example, we restrict
the higher harmonics to satisfy the conditions ro; < Nwpmac + 1. The
natural choice for r is N, in which case eq. (17) can be rewritten as

N , ,
S (ARl + 1B
1 P=

If N is chosen to be 2, then, since BY), = 0, eq. (21), with eq. (12), can be
written as

(21) S =

. 2 . .
(22) S =S BRI+ AL
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The variance ¢7 is given by eq. (13).

Practical Implementation of the FAST Method

While applicable to any problems that are described by a set of differ-
ential equations, the FAST method is particularly useful in the analysis
of chemical kinetics. The parameters k; may include rate constants,
Arrhenius parameters, stoichiometric coefficients, branching ratios, and
initial conditions uy. Application of the FAST method to the sensitivity
analysis of reaction mechanisms is illustrated in Figure 1.

Several steps are involved. First the rate laws must be specified. Having
established the basic set of differential equations, the next step is to select
the parameters to be varied. For each parameter that is to be studied a
range of uncertainty must be established and a search curve selected from
the options presented in Table I. Given this information and the times

USER INPUTS

® Parameters to be varied: e Specification of rate laws
initial conditions
rate data du_i
stoichiometric coefficients —_ Fi(g; k) i=1,2....,n
branching ratios dt

® Selection of parameter ranges
and search curves (see Table 1).

FOURIER AMPLITUDE SéNSITIVITY TEST PROGRAM

I
Frequency assignment to parameters

Loop s %} tozi
Set search variable S;

Calculate parameter combination
k =G Z(smmlsj)

NUMERICAL SOLUTION PROGRAM

Parameter combination ———e Solve set of differential
i equations to determine
ui(t), i=1,2,...,n

r-Output concentrations

Store outputs for each
analysis time

Loop over each
output variable

Calculate mean, standard
deviation, variance, coefficient
of variation

Calculate partial variance
for each parameter and
rank order

O ——

SENSITIVITY ANALYSIS OF MECHANISM
Figure 1. Application of the FAST method to chemical kinetics.
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TABLE I. Search curves for different parameter variations.

Application kJ(s) Mean Value !-:J Rominal Value ;J
dieg - - Ko it ¥t
Adaditive variation kJ(s) = kJ[l + Vj sin sz] h| h| h| A|
2 u L
kJ + kJ
©
- , - 3 Uyt Ly
Zxpcnential variation kJ(s) XJ exp [v.] sin st] kJ kJ ln(kl)
J
Proportional vnriuticr_‘n . kJ(s) = EJ ex‘pﬁ‘1 sin qu] )—tJ tn(a)
X
(3]
T H TR
Skewed variation a_j + 5_1 sinm‘ls -1 mj -1 o, = 1 P . rl' ®
I3 X,(s) = v v ( ) 1 2] u 44
k¥ + k -3 -1
(i>“12 ) J L ey N ’ ’
3
a.(rls r!‘ - 2)
g, =
J (ru - rl)
v =-i ru¢r'('-2rurl
J J e rl -2

2p f—upper limit for_ parameter; k j-—lower limit for parameter.
bru=k4/k;,rt= ki/k;.

for the analysis of the concentrations, the FAST program automatically
evaluates the model system for each parameter combination. The con-
centration outputs at each time are then processed to determine the partial
variances and sensitivity ranking for each of the parameters. The detailed
computational procedure is as follows:

(a) Assign to each of the m parameters a different frequency w;, [ = 1,
2, -, m.

(b) Based on some knowledge of the expected range of variation for each
parameter, select appropriate search curves from Table 1.

(¢) Select the number of parameter combinations to be evaluated. For
N, points, a symmetric and uniform spacing in s, including s = 0, is given

by .

ks

(23) S; 2

2] —N;—1 .
Y , J

(d) Solve the set of differential equations, eq. (1), for each parameter
combination s; defined by k = kG (sin ws;j),j=1,2,+++,N;. Inmany
applications, particularly in chemical kinetics, where stiffness is a problem,
the computation time per solution can be minimized by using a variable-
order method, such as the well-known Gear algorithm [8].

Once the mode! system has been evaluated for each parameter combi-
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nation, the influence of the ith parameter k; on the ith concentration at
time ¢ can be examined by calculating the partial variance S{)(¢),

N . .
2 X [JASL )2+ |BY (8)]2]
p=1

24 Oty =
( ) Sw[ ( ) o_;r)_(t)
The variance ¢?(t) can be approximated numerically by
1 N
(25) N & fwilt;s;) = (u(t))?

Nq]:l

and the mean value (u;(¢)) by

1N
(26) {u; (t)) =N 2 u(tss))

sJj=1

Simple quadrature formulas can be used to evaluate the amplitudes
AL (t) and BY) (t). The following expressions were derived directly from
egs. (15) and (16):

27)  AfL(t)

O, Pw; odd
—{ui(t; No) + il [i(¢; No + q) + w;(¢; No — q)]
\u:s q=
X cos pwﬂgvr}, Dw; even
(28) B, (t)
0, pw; even

L %If [ui(t; No + q) — ui(t; No — q)] Sinpwqu}, pw; odd
N; l4=1 N,

where N, = (N; — 1)/2and N, = Ny + 1. (The index notation in egs. (26)
- and (27) has been chosen to simplify the computer implementation using
programming languages such as FORTRAN that do not allow negative or
zero indices.)

Figure 2 with {w;} = [3, 5] and Figure 3 with {w;} = [11, 13] illustrate the
two basic approximations involved in the FAST method. The first is that
the frequency sets {w;} are commensurate, that is, the search curves do not
completely cover the parameter space. The second approximation involves
the use of a finite number of points in the numerical quadrature. Both of
these considerations have been quantitatively examined by Cukier and
co-workers [4] and for this reason will not be repeated here.
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kl
| 10

Figure 2. Space-filling search curve for case {wi] = [3,5] where k; = k; exp(7; sin
ws) and kg = k[l + 72 sin wes]. +—integration points for Ny = 20max + 1;
@®—nominal value of k1 and k.

Example—Application to a Single Reaction

In this section we wish to present an example of the use of the FAST
method. We have purposely chosen a very simple system so that the in-
terpretation of the results can be easily discussed; an application involving
a larger number of parameters is described in Boni and Penner [9]. Con-
sider a hypothetical recombination reaction

A+A—

with rate constant « = k1 exp(—kso/T). We wish to examine the sensitivity
~ of the concentration of A to variations in the Arrhenius parameters ki and
koat T = 298°K. Weletu = [A]/[Aq], the normalized concentration. The
nominal values of k; and ks are chosen as 1.79 X 1019 1/mol-sec and 500°K,
respectively. The (arbitrary) ranges of uncertainty and initial concen-
tration were chosen as 8.97 X 10° < k; < 3.59 X 1010, 0 < k5 < 1000, [Ao]
= 1 mol/l.

We use the transformations (see Table I) k1 = k; exp vy and kg = ks (1
+ v5), where »; = (In 2) sin w;s and v, = sin wes. For this particular problem
the sensitivity coefficients can be calculated analytically, dou/ok, =
—2[Ao)ktu?/k, and du/dky = 2[Ac)xtu?/T. The FAST method essentially
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k2
10 1 |
I
k
! o >N
Figure 3. Space-filling search curve for case {w;} = [11,13] where k; = k; exp(i

sin w;s) and ks = k(1 + 72 sin wes]. +—integration points for N, = = 2Wmax + 1;
®—nominal value of k; and k».

calculates the Fourier amplitude B,, which is proportional to {du/dy,),
which is the relative sensitivity with respect to the nondimensional »; for
the transformations exp »; = k;/k; or 1 + v; = k,/k; (see Appendix A).

In Figure 4 the concentration u, partial variances S,, and S,,, funda-
mental Fourier coefficients B, and B,,,, and the relative sensitivity coef-
ficients k1 0u/dk, and ks du/ bk2 are plotted for {wy, we} = (3, 5) and N, =
21. (The results were found to be insensitive to the choice of the frequency
set and number of dividing points.) The fundamental Fourier coefficients
B, and B, follow quite well the general trends of the relative sensitivity
coefficients k; du/dk, and ks du/dks, demonstrating the fundamental
relationship in the FAST method, B,,, « {(du/dv;). The partial variance
S., follows the trends of B,,, and k- au/ Oks. On the other hand, the partial
variance S,,, does not follow the trends of B, or k; du/dk,. Itdecreases
when the absolute values of B,,, and k; du/dk, increase and increases when
the absolute values of B,,; and k; du/dk; decrease. We observe the fol-
lowing relationship between the partial variances;

(29) S, + Su, = 0.96 + 0.03

This implies that if the relative importance of the effects of the parameter
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Figure 4. Comparison of the analytical sensitivity coefficients k; du/dk; and the
fundamental Fourier coefficients B, and partial variance S.; as calculated by the
FAST method (0 = 1, 2). Plots are based on the normalized concentration, that
is, u = [A}/[Ao). The parameters used are w; = 3, wz = 5, and Ny = dwmax +1 =
21.

uncertainty in kq, that is, the partial variance S, increases, then S, the
measure of relative importance for kg, automatically decreases. For the
more general multiparameter examples studied by Cukier and co-workers
[5], we can observe the same relationship, namely, ZZ; S, = constant when
the coupling terms like S+, are small. For the parameter range we have
studied, all the sensitivity measures including the analytical sensitivity
coefficients agreed and gave consistent results, indicating that the con-
centration of A is more sensitive to changes in ko than to changes in k;.
To test the FAST method further, we increased the range of uncertainty
for the parameter kq as follows: 0 < k; < 3.59 X 10101 To take account
* of this range of uncertainty we use the transformation (see TableI) k; =
E; (1 + sin wis). The range of uncertainty of ks is held fixed.

The results of calculations are plotted in Figure 5. Since the parameter
uncertainty for k; is increased, we observe that the relative importance of
the parameter uncertainty in & is increased and S, > S, for ¢ > 0.08.
This fact, is also reflected in the fundamental Fourier coefficients B.,, and
B.,, The fundamental Fourier coefficient B.,, does not agree with the trend

1 Such a range of variation is, of course, physically implausible. We have chosen it only
to illustrate the ability of the method to handle extreme limits of variation.
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Figure 5. Fundamental Fourier coefficients B, and partial variances S, =1,
2) for the case of increased range of uncertainties in the parameter k,. The pa-
rameters used in the FAST method are w; = 3, wy = 5,and Ny = 4wpax + 1 = 21.

of the analytical sensitivity solution of &, du/ok 1. This behavior is due
to the characteristics of the Fourier amplitude sensitivity test and the
sensitivity coefficient. The FAST method takes account of the very large
variations about the nominal values, while the sensitivity coefficient k;
Ou/dky is computed at the nominal values for infinitesimal variations.
Thus for the case of the increased range of uncertainty of k,, we conclude
that the concentrations of A is more sensitive to kithanto ks, We observe
from this example that the partial variances essentially propagate the
uncertainties in the parameters.

Summary

An algorithm for the automatic sensitivity analysis of kinetic mechanisms
based on the FAST method of Shuler and co-workers [2-5] has been de-
scribed, and a simple exampie iliustrating its use has been given. With this
method assessment of the relative influence of kinetic parameters on the
predicted concentrations from a chemical mechanism becomes a relatively
routine undertaking. A complete code for the sensitivity analysis of
mechanisms includes three routines: 1) one that forms the kinetic rate
equations based on the set of chemical reactions, 2) one that integrates the
ordinary differential (ODE) rate equations, and 3) one that processes the
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concentrations to produce the partial variances of the FAST method. This
paper has focused on the third routine. The authors have prepared a
complete code consisting of an algebraic manipulation routine to form the
rate equations for any set of chemical reactions, the ODE solver EPISODE
[10, 11], and the FAST method described here. Interested readers may
contact the authors to obtain a copy of the code.

Acknowledgment

This work was supported by the Environmental Protection Agency under
Grant No. R805537.

Appendix A

Relation of the FAST Method to Sensitivity Coefficients

In this appendix we summarize the relationship of the FAST method
to the generalized sensitivity coefficients { Ou;/dk,; ) and to the customary
linear sensitivity measures ou;/9k;|% ¢ = 1,2, =, n and1l =1, 2, -, m.
Cukier and co-workers [4, 5] have considered the problem in somewhat more
detail. Here we illustrate the results, using as an example the parameter
representation.

(30) k, = G(sin w;s) = k; exp v
(31) vy = g(sin w;s)

where &, is the nominal value for the parameter k;. The function g; 1s de-

termined to satisfy
Te) in 6 1
(32) C05201 _g_is_M = —
O sin 6; a;
where 6, = w;s (mod 27) and q; is a constant parameter. From eq. (3) anc}
Weyl’s theorem, we can write

(33) BE(t) = (w;(t;s) sin 6;)
2 27
=f0 j) Wi (£ 0y, -+, B0) sin 6, P(B1, + -, 6, dBy - - A

where P(8,, - - -, 0m) = (27)~™. Then using egs. (30)~(33) and integrating
by parts, we obtain the desired relationship between B{) and (u;/ov;),

(34) Bffl) — l (9"&)
a; aw
where N - oy m
f . — H p(uj, aj) dl/j
aui —® —® aul j=1
w -
Qv

f e PG 0 dy
— @ — j=1
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and where p(;, a;) = a;/cosh ajv;. The function
m

(36) Py« -+, vm) = I] p(v;, a;)
j=1

can be interpreted as a probability density in » space. Thus the Fourier
coefficient B{}) is related to a generalized average of the sensitivity (du;/
ovi). (For an alternative transformation, G;(sin ws) = k(1 + »;), the same
result is obtained.) The relationship of eq. (34) to the linear sensitivity
measure can be seen by expanding du;/dv; in a MacLaurin series about »
= 0 and substituting the results into eq. (35) to give

ou; ou;
/n7 et} =_l
(37) ( > o,
dl/l"’dllm

oy
o © m = pi|or (aui)
Lay) 3 A0
N j‘_m f_mjglp("’ 4 r§1 r! au;\au, »=0

f f 'Hp(uj-,aj)dul---dum
e —w 21

From eq. (37) it is clear that unless the u;(t; s) are linear functions of the
parameters ky, -, kn, the generalized form eq. (34) is not equivalent to
ou;/dvy|,=o. If the second and higher order terms can be neglected, then
the following approximate relationship holds:

v=0

: 1 ou;l
(38) BY) ~ ——t
a; Ovy|v=0

Appendix B

Extension to Correlated Parameters

In the preceding development the parameters k), [ = 1, 2, -, m, have been
assumed to be uncorrelated. Thus a range of uncertainty can be assigned
to each parameter independent of the uncertainty range assigned to the
other parameters. Relationships may exist, however, among two or more
parameters. For example, if k; and k5 represent fractional paths for a
single reaction, then k; + ks = 1.

We assume that the parameters are subject to the following con-
straint:

(39) H(klykZ)".)km)SO

To employ the FAST method it is necessary to find a set of transformations
ki = hi(ay, as, -+, a,,) such that eq. (39) is satisfied for a set of independent
;. 'The fundamental Fourier coefficient for « can be called B, . Weneed



434
AUTOMATIC SENSITIVITY ANALYSIS 443

to relate B,,, to the Fourier coefficients B., and B,,. Thiscan be done by
" considering the sensitivity coefficients
du;  m doy du;
40 — =) ——
(40) Ok; ;2‘1 ok; day
where day/dk; is evaluated at the nominal values k;. The material in
Appendix A is now needed. By using the v-space average, eq. (35), we can
approximate eq. (40) by

u; m 1 oy |Ou;
41). oy —— (=
( ) ak]‘ 1:;1 ay 0 j (5111}
Then, from eq. (41),
(42) BY ~ i %B(i)
“ T S ok

To illustrate the approach consider, for example, the case of the con-
straint

(43) @+ﬁ=1
. a b

where 0 < k; < b,0 < kg < a, and k; = b/2 and k3 = a/2. To apply the
FAST method to k; and k- we represent kq and kg by

b
@ Nl
o
45 ko= ————
(45) 2= i

Thus for 0 < o« < Va2 + b2, the constraint eq. (43) is satisfied. The search
for « is chosen as

v a2 2
(46) a= —i;—b— (1 + sin w,s)

and the FAST method is applied to « rather than to k; and ko. For ex-
ample, the constraint (44) becomes

B _ Qa du ~Va2+b23
“17 3k, \Ok1 b we
Fe) VaZ+ b2
(47) B, = a<bu>; a?+b B,
_ bkg akz a ‘

We note that —bB,,, = aB.,, which is consistent with the relationship be-
tween the sensitivity coefficients du/dk; and ou/dks.
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Abstract—This paper describes a computational implementation of the Fourier Amplitude Sensitivity
Test (FAST) and illustrates its use with a sample problem. The FAST procedure is ideally suited to
the task of determinating the global sensitivity of nonlinear mathematical models subjected to
variations of arbitrary size in either the system parameters or initial conditions. A FORTRAN
computer program, capable of performing sensitivity analyses of either algebraic or differential
equation systems is described.

Scope—In virtually all branches of science and engineering, descriptions of phenomena lead to
differential equations of substantial complexity. The complexity of such models makes it difficult to
determine the effect uncertainties in physical parameters have on their solutions. Traditionally, the
analysis of the sensitivity of models to small perturbations in parameters is called local sensitivity
analysis. When a measure of the sensitivity of the solution to variations of a parameter is combined
in an appropriate manner with a measure of the actual degree of uncertainty in the parameter’s value,
it may then be determined which parameters, through both their sensitivity and uncertainty, have the
most influence on the solution. Such a procedure can be called a global sensitivity analysis.

Conventional global sensitivity analysis techniques have generally been based on either a pattern
search or Monte Carlo technique. Pattern search and Monte Carlo approaches can become extremely
time consuming and expensive as the number of parameters become large.

The Fourier Amplitude Sensitivity Test (FAST) technique associates each uncertain parameter
with a specific frequency in the Fourier transform space of the system. The system sensitivities are
then determined by solving the system equations for discrete values of the Fourier transform
variable and then computing the Fourier coefficients associated with each parameter frequency. This
approach allows nonlinear global sensitivities of systems subjected to large parameter variations to
be determined in a practical and efficient manner.

Conclusions and Significance—Because of the complex nature of many physical and chemical
systems, an integral element of any modeling study should be a formal assessment of the effects of
uncertainties in the parameterization of the physical processes. In this paper particular attention is
given to the Fourier Amplitude Sensitivity Test (FAST) for examining the global sensitivity of
nonlinear mathematical models. The FAST technique allows arbitrarily large variations in either
system parameters or initial conditions.

The computer program presented here provides a general framework for implementation of the
FAST method. When combined with a user supplied subroutine for the specific system of interest,
the FAST program computes the sensitivities of the system outputs to the parameter variations
specified by the user. The method is illustrated on an example involving a simple autocatalytic
reaction mechanism.

1. INTRODUCTION
A variety of chemical engineering phenomena are des-
cribed by lengthy and complex mathematical models. It
is often desirable to determine the effect of uncertainties
in system parameters on the system behavior and to
determine which parameters are most influential. The
complexity of many models makes it difficult to deter-
mine the effect uncertainties in physical and chemical
parameters have on solutions. When a measure of the
sensitivity of the solution to variations of a parameter is
combined in an appropriate manner with a measure of
the degree of uncertainty in the parameter’s value, one
may then determine which parameters, through both
their sensitivity and uncertainty, have the most influence

*Author whom correspondence should be addressed.

on predicted system behavior. Such a study can be
termed a sensitivityluncertainty analysis or a global
sensitivity analysis.

Consider a system that is described by a set of n
coupled ordinary differential equations containing m
narameters kb, .k

dx_,
(Tt——f(x,k) 0

where x is the n-dimensional vector of the system state
and k is the m-dimensional parameter vector. A basic
measure of the effect of uncertainties in k on x(¢) is the
deviation in x caused by a variation in k, Ax(f;k)=
x(t;k + Ak) —x(¢; k), where x(¢; k) denotes the solution of
(1) at time ¢ with k = k. Taylor's theorem can be invoked
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to express the deviation in state variable i as

- — m ax;
(E+ak) = xR0+ S 2 Ak,
x(t; k+Ak) = x(2; k) ]Zl 3
+0((max Ak;)?). ()

The partial derivatives dx:(#)/dk;, i=1,2,...,n,j=
1,2,..., m are the so-called sensitivity coefficients. Much
of the work on sensitivity analysis has been concerned
with calculation of these sensitivity coefficients. Sen-
sitivity analysis techniques that rely on calculation of the
sensitivity coefficients are strictly applicable only to
small parameter variations since the higher order terms
in (2) are neglected.

Although the sensitivity coefficients dx/ok; provide
direct information on the effect of a small variation in
each parameter about its nominal value k; on each state
variable, they do not indicate the effect of simultaneous,
large variations in all parameters on the state variables.
An analysis that accounts for simultaneous parameter
variations of arbitrary magnitude can be termed a global
sensitivity analysis. The sensitivity coefficients are local
gradients in the multidimensional parameter space at the
nominal value k. A technique that considers the effect of
simultaneous parameter variations over their actual
expected ranges of uncertainty produces an average
measure of sensitivity over the entire admissible region
of variation and thus provides an essentially different
measure of sensitivity than that of the sensitivity
coefficients. Therefore, both types of analysis are useful
in studying the behavior of a system.

Figure 1 shows schematically a hypothetical solution
surface x;(t;k) over the domain of uncertainty of two
parameters, k, and k,. The nominal parameter values are
k; and k,, and the assumed upper and lower limits of
variation are indicated producing the domain of un-
certainty in the k,—k. plane. The resulting range of
uncertainty in x; is also indicated. The surface shown in
Fig. 1 is that at a certain time . Generally the variations
in the solutions x;(t), i=1,2,...,n must be considered
as a function of time. The point Q on the solution
surface represents the magnitude of the solution x; at
time ¢ with both parameters at their nominal, or best
guess, values. Varying both parameters over the full
domain of uncertainty generates the two-dimensional
solution surface that changes as ¢ changes. The sen-
sitivity coefficients, dx/ok, and dxJ/dk,, evaluated at k
and k, represent the slopes of the surface in the two

i
Range of Uncertainty
nox (1)
Domain of Uncertainty
in the Porameters {k]
—'—5, k
z mn
SEELE"
_ v
-k,

Fig. 1. Hypothetical solution surface over the domain of un-
certainty of two parameters (after Gelinas and Vajk[8]).

coordinate directions at point Q. A local sensitivity
analysis would focus on calculation of these two deriva-
tives and their time variation. For small displacements
about the nominal values, the tangent plane at Q differs
from the actual solution surface only by a small amount.
In this regime the sensitivity coeflicients indicate to
which parameter the solution is most sensitive. The
sensitivity coefficients at point Q do not contain in-
formation on the behavior of the surface away from Q
nor do they indicate the full range of variation of x; in
the domain-of uncertainty of the parameters. The global
sensitivity analysis is concerned with assessing the
behavior of the entire solution surface of x; over the
domain of uncertainty of the two parameters.

If we have some knowledge of the probability dis-
tributions of the two parameters, pi(k:) and pi(kz), the
probability disribution for x; can in principle be com-
puted. From the prebability distribution of x;, certain
statistical properties such as the expected value,

kzm‘l klmx
(1)) = L e J’kl ~xi(t; ky, k2)p(k)pa(ks) dky dk,
3 min
3)

and the variance,
(1) = {x()) —{x()} )

where

o= [k b kP hpth) d gk
©

can be computed.

In Fig. 2 given assumed probability distributions for
each parameter, a hypothetical probability distribution
for the solution is shown. Note that the best value of
each parameter, the nominal value, may differ in general
from either the most likely value or the mean value.
Likewise, the mean value of the solution, (x;(t)) may not
correspond to the value at the nominal parameter values,
i.e. point Q.

Whether or not the probability distributions for k, and
k, are given, the solution surface for x; can be deter-
mined by systematically selecting points in the domain of
uncertainty of &, and k. and solving the system to

Qomain of Uncartainty
in the Porometers (k|

pliy}

Fig. 2. Hypothetical probability distribution of soluticn surface
corresponding to the probability distributions of the two
parameters (after Gelinas and Vajk(8]).
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determine x;({; &y, k2). This approach is indicated in Fig.
3. A sensitivity/uncertainty analysis necessitates some
form of sampling over the domain of uncertainty of the
parameters.

Figure 3 is a schematic illustration of the Monte Carlo
method of sensitivity analysis. A random number
generator is used to select values of the uncertain
parameters within the domain of uncertainty. The system
1s then solved for each of the parameter combinations
randomly selected. The values of x;{¢; k) thus computed
are analyzed by standard statistical methods. The dis-
tribution of values obtained is shown in Fig. 3 as a
histogram with mean vaiue (x;). The randomly selected
points in the domain of uncertainty of the parameters
can be chosen according to any prescribed probability
density functions for the parameters. No special pro-
gramming 1s required, only that needed to select the
parameter values and analyze the solutions statistically.

This paper is devoted to a patiern search procedure for
global sensitivity analysis that is an alternative to the
Monte Carlo method illustrated in Fig. 3. The method is
called the Fourier Amplitude sensitivity Test (FAST) and
was originally developed by Shuler et al.[1-4].

In the next section the mathematical basis of the
FAST method is outlined. Then in Section 3 its com-
putational implementation is described. Section 4 con-
tains the description of the computer program and its
operation. An example drawn from chemical kinetics is
given in Section 5 to illustrate the use of the program.

2. MATHEMATICAL BASIS OF THE FAST METHOD

The basic problem is to determine the sensitivity of
each x; to simultaneous variations in all the parameters
{k;}. This is done by considering that the {k;]} have a
distribution of values resulting from either imprecision or
uncertainty in their definition. Under these. conditions,
the ensemble mean for x; is given by the generalization
of (3),

(x.-)=J" fx,-(kl,kz‘....km)p(kl,kz,...,km)

dk; dk,,...,dk, (6)

where p is the m-dimensional probability density for k.
The central idea of the FAST method is to convert the

m-dimensional integral (6) into a one dimensional form

Comain of Uncertainty
In the Porometers (ki

piky)

Fig. 3. Monte Carlo approach to generating the solution surface
(after Gelinas and Vajk[8]).

CACE Vol. 6, No. 1—-B

by using the transformaiion,

”(’ = G([Sin ((U;S)]', [ = 1, 2, . (7)

,m.

For an appropriate set of functions {G,}, it can be shown
that[5]

N I
%= (x)= mmf_rx.-[kms). ks), . kn(9)ds. @)

This relationship will hold only if the frequency set. {w},
Is incommensurate, i.e.

i Yiwi = 0.

%

for an integer set of {y} if and only if ¥ = 0 for every i.
The functions {G,} need to be chosen so that the arc
length, ds, is proportionai to p(k,, k.. ..., k.)dk for all
{. The transformation then results in a search curve that
samples the parameter space in a manner consistent with
the statistics described by p{ki. ks, ..., kn).

The parametric curve defined by (7) is termed a search
curve, and s s termed the search variable. As s is varied,
(7) traces out a space filling curve in the parameter space.
If it were possible to use an incommensurate frequency
set, the curve would never close upon itself and would
pass arbitrarily close to every point in the parameter
space. This result is a consequence of Weyl's theorem.
When integer frequencies are used, it is not possible to
obtain a truly incommensurate frequency set and the
search curves take on the appearance of multi-dimen-
sional Lissajous curves. The use of higher frequencies
results in successively longer search curves. Two exam-
ples are shown in Fig. 4 and 5. The length of the search
curve and the density of sample poinis is considerably
greater in the second case.

Practical considerations dictate that an integer rather
than an incommensurate frequency set must be used.
This introduces two types of error. First, the search
curve is no longer space-filling, i.e. it does not pass

Ky
A
10 23 \‘
Ky —
X
]
| ‘_ 10 - k|
k|
K, = K, exp[ ¥, sinlw, )]
ky = ;2 [\ + v, sinlw, s)]
{w}:(3.5] N:=2
Fig. 4. Search curve with frequencies w; =3, w, = 5.
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If variance of x;, i.e.
* 2 1 T2 = (6] (i)
(x; )=2—; P(s)ds = 3 {7+ B (19)
- JE=
The variance and harmonics due to o, are expressed by
_ ( o922 T [ASE + BE). (16)
k! p=l
The normalized sensitivity measure, the partial variance,
|, S¥ is then defined by the ratio of the variance due to
r frequency w, to the total variance,
i (0'2))2
' &< 54 = W (1n
) , o >k

k, = exp [V, sin(w, 3]

K,
Ky = k{1 e %, sin (ay9)]

w={1,13] N=53

Fig. 5. Search curve with frequencies w; = 11, wy = 13.

arbitrarily close to any point in the k-space; secondly,
the fundamental frequencies used to describe the set {k;}
will have harmonics that interfere with one another.
However, the differences between t and {x) for a well
chosen integer frequency set can be made arbitrarily
small[2, 3].

An integer frequency set results in a periodic search
curve that becomes a closed path in the s-space. When s
is varied between — 7 and + m, the entire search curve is
traversed. The pericdicity of the {k} then implies that the
Fourier coefficients

AG) =§1; r siki(s), - - o, km(8)] COS (pens) ds
p=0,1,2,...
B, = 51; L 2lki), . kon(5)] sin (pes) ds

(10)

(1n

are a measure of the sensitivity of the x; output function
to the kth uncertain parameter. For instance, in the case
where x; is totally insensitive to a given parameter, the
coefficients corresponding to that parameter would be
Zero.

The ensemble average,

p=12,...

=g [ 5l hnlds (12

can be expressed in terms of the Fourier coefficients as

(x:) = AS” + B§” = AS™. (13)
The variance of x; is then
ol = L Jm x2ds — (x;)? (14
kyell B i)

Parseval’s theorem can then be used to determine the

Thus the {SY)} represent an ordered measure of the
sensitivity of the system to each of the {k;} parameters.
The FAST method requires that the system be solved
to produce the output state variable values, the Fourier
coefficients and subsequently the partial variances.

3. COMPUTATIONAL IMPLEMENTATION OF THE FAST ALGORITHM
Application of the FAST method requires the numeri-
cal evaluation of the Fourier coefficients, AY), and By,
This in turn requires the x; be evaluated as s ranges over
[ @, 7]. Restricting the frequency set to odd integers
reduces the range of s to [— /2, #/2}. In this case

x(m—s)=x(s)
x(—7+s)=x(-53)

o))

T Y
x(—7+s)-x( 3 s) (18)
and the Fourier coefficients can be expressed as:
0 ; jodd
A(_i) - 12 (19)
lf [x(s)+x(—s)cosjsds; jeven
T Jo
and
0 ; jeven
i 20
B§ ) = ( )

w2 .
lf [x;(8)— x;(—5)]sinjs ds ; jodd.
T Jo

The actual number of points at which the system must be
evaluated can be derived from the Nyquist criterion (6],
and is found to be .

r= Nogax+ 1. @n

Where r is the number of solution points and N an even
integer. For convenience in calculating the Fourier
coefficients, the additional condition

2r=4q+2 22)

where g is an integer is also imposed. The values of s are
taken to be equally spaced throughout the range [ — #/2,
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m/2), and the discrete points at which x; is calculated
in the Fourier space are given by

2j-r-1
s,»=§[’——

] i=12
:

(23)

The following difference expressions for Fourier
coefficients can be derived by a simple numerical
quadrature technique [4, 7],

odd)
even)

(24)

B} =_ (25)

0 (j
0
i 1 i u i i k '
A =g [*° * 2 txtncos () | Geven)
(26)
) 1|; (j odd)
i 27)

sm( mik
2g+1

k-l

where x' replaces x; for notational purposes.
Interference between the frequencies will occur as a
result of this numerical evaluation when

qo; = poyJMod (Nogax + 1)) 28
which results in
AQE+BLE=ALPBLE 9
since
. Tqw; - . mTpay
sin | Rty )= o0 [ ] oo
and
Tqw; - TPy
cos [Nwmzx+ 1] = cos [Nmmax+ l] (31)

This interference, called aliasing, is eliminating when

ror < Nogax+1 . (32)
N is therefore the maximum number of Fourier
coefficients that may be retained in calculating the partial
variances without interferences between the assigned
frequencies. The expression for SY) then becomes

23 [lage+ssr]

Interference will also result from the use of an integer
frequency set if the number of Fourier coefficients N
used in the summation (33) is greater than or equal to the
smallest frequency. To illustrate this consider (33) for the
frequencies w, and w;,

S@= (33)

b q@t, gty
SO =AD+BY + -+ AL+ B,
W) — 462 G2 g @2

S§ =AY+ B+ - + AR+ BL,,.

If N2 w,, terms in the series for U} and $%). become
identical. For cxample if N=uw,, and if w; > w, there
will be a term in the SY) series for which

L4l

W A
Awlwl - Aiwr-

In such a case, the effect of the variation of parameter /
enters spuriously into the partial variance for the varia-
tion of parameter /'.

In general, the interference betwezen the higher har-
monics will be eliminated when

N < Wmin — 1. (37)

N is also related to the number of function evaluations
required by (21), so it is desirable to use the minimum
possible value, which is N =2. Then a minimum
frequency of at least three is sufficient to remove any
harmonic interference effects from the partial variances.
The final expression for the partial variances then
becomes

S5 =2 (BLLF+ AL (9)
The choice of N =2 restricts the number of terms in the
series to two. This is generally sufficient because the
magnitude of the higher order terms in the Fourier series
tend to decrease rapidly.

Implementation of the FAST technique also requires
the selection of a frequency set, which can be done
recursively using

wl=ﬂn

;= o e

(39)
(40)

as described in Cukier et al.[4). The Q, and d, we have
used are tabulated in Table 1.

The final step in the FAST implementation is the
determination of the transformation function {G,} that
determine the actual search curve traversed in s-space.
If the probabilities of occurrence for the parameters {k}
are independent, the probability density describing their
effects has the form,

Plky, ka, . .., k) = Pr(ki)Polks) ... Prnlkn).  (41)
In this case it can be shown that the transformation
functions must obey the relation[5]

dG:(X)

(1 -x)'"2P(G) == =1 (42)

with the initial conditions G,(0) = 0. A tabulation of four
different search curve formulations and their transfor-
mation functions is given in Table 2.

The parameter probability distributions used to derive
these curves are described in Cukier e al.[3]: The first
search curve is suitable for cases with small variations in
the uncertain parameters while the second and third are
applicable to cases with large variations.

4. PROGRAM DESCRIPTION AND OPERATION

A flowchart of the FAST program is shown in Fig. 6.
There are two user interfaces with the program. One is
the input data set which contains the following in-
formation; program description cards, control cards,
analysis times (optional), and parameter cards. The
second interface is a user supplied subroutine, called F,
that calculates the state variable values for a given
parameter combination. When the state variables must
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Table 1. Parameters used in calculating frequency sets free of interferences to fourth order

N Q2 d N Q d
n n n n
1 0 4 26 385° 416
2 3 8 27 157 106
3 1 6 28 215 208
4 5 10 29 449 328
5 11 20 30 163 198
6 1 22 3 337 382
7 17 32 32 253 88
8 23 40 33 375 348
9 19 38 34 441 186
10 25 26 35 673 140
11 41 56 36 773 170
12 31 62 37 875 284
13 23 46 38 873 568
14 87 76 3% 587 302
15 67 96 40 849 438
16 73 60 41 623 410
17 85 86 42 637 248
15 143 126 43 851 448
13 149 134 44 943 388
20 99 112 45 1171 596
21 119 92 46 1225 216
22 237 128 47 1335 100
23 267 154 48 1725 488
23 283 196 49 1663 166
25 151 34 50 2019 Q

Table 2. Search curves for Fourier Amplitude Sensitivity Test computer program

a_
APPLICATION ALY VEAN VALUE K, NOMINAL VALUE +
Ll
v, 2t !
KK K. =X
ADDITIVE VARIATION K K 1+5 s 5 B
) ] ] J 2 !
K + K
1
u
- - k
EXPONENTIAL VARIATION K(1): K exp [,] 3in nJS] ~ n‘: u; LZ ln(—k} )
|
PROPOATIONAL VARIATION ka1 eE exp [-J sinw, 3] X I {Q)
W = 2 [X
=z o [
ll ol] R kj (u )
u, *+ B sinw s -1 -1 b
SKEWZZ VARIATION NSO P B Rt ) Yl S e oLl i
S s Ve rgangs 1T P T P S
57 (ﬁL_—))
! 2 _u'(r"Or,—Z)
B -

! (-t

R DL Tl
1 1] gusd-2

J
¢ k'l' ~ uppzr limit for porameter, K, = lower himit for parameter

buayy L ey

! b ] ]
be calculated numerically, the user must also provide a
subroutine to perform this function. For chemical kinetic
applications several existing differential equation solvers
can be easily adopted.

The input information is stored in an array called P.
Subroutine F must access P in the same sequence that
the parameters were specified on the input cards. The
state variables calculated in the F subroutine are retur-
ned in an array named C. The structure of this array is
shown in Fig. 7. An example of subroutine F for the
sample problem in Section 5 is given in Fig. 3. The
detailed fields and formats for the input file are shown in
Table 3.

The default for the number of analysis times is one,
and the default for the number of terms in the partial
variance series is two. If this latter default is to be
changed, care must be exercised to be sure that the

number of points at which x and the Fourier coefficients
are evaluated is also modified so that interferences be-
tween the parameters will not occur.

Five files can be accessed during execution of the
program. These are described in Table 4. Whenever the
option to save the results is used, both file IDOUT and
file IDISC must be allocated. IDOUT must be allocated
when the reanalysis option is specified, and IDPLT must
be allocated when the option to plot the partial variances
is used. ICARD and IPRIN must be allocated at all
times.

Several of the arrays used in the FAST program can
become quite large for problems involving several
parameters, output state variables and/or analysis times.
The default sizes for the program arrays are given in
Table 5. The program tests the input requests to deter-
mine if the fault storage is sufficient, if not, the program
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FOUER MwOITUDE SENS TV Ty TEST PROGRAM

e
LYo yrve

USER INPUTS

ooty asswecnt |, | 4meaamn To s oame

2 ramam(tres v HLOITOR O SLAACR TumvE

[ ser srwmce vamame

WSER SUPRLED SUBROUTINE F

S ombuaniom CvOn mASMETIR IOuaTOm
LA 02 s foe
Trat FLEL I VL T )
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Fig. 6. Fourier Amplitude Sensitivity Test program.

Output Array - Array Index

U 1
Ist analysis time b 2
u N
n
Uy N+1
uy N+2
u NN
n
uy iN+1
u, iN+2
ith analysis time
u, iNeN
1
U2
mth analysis time -
Uy NxM

Fig. 7. Structure of the output array C

SUBROLTINE F{NT TIME %PC WF23M.P NSTAT .C}

c
c
€ INPYT VARIABLE 2ESCRIPTION VARIABLE TY3E
c
S NOMBER OF ANALYSIS TIMES JNTEGER
C Tk ARRAY OF ANALYSIS TIMES REEL A2RAY
¢ owec TURRENT PARAMETER INTEGER
c COMBINATION NUMBER
€ NPRRM NGBER OF PARAMETERS INTEGER
c @ ARRAY OF PARAMETER VALUES REAL ARRAY
¢ NUMBER OF OUTPUT VARIABLES INTEGER
C OUTPUT VARIABLE DESCRIPTION ARIABLE TYPE
c
C o ARRAY OF STATE VARIABLE LR ARRAY
c VALUES FOR EACH ANALYSIS TIME
c
DIMENSION TIME(NT), P(NPARM), C(NSTAT)
c
€ F FOR TEST PROBLEM A » X = 2X
c
c
c
C UNLDAD THE PARAMETERS
c
X0:P(1)
A0-P(2)
A =p(3)
8 2(a)
TA:P(5)
c
€ SOLVE THE SYSTEM
c
00 10 Je1 4T
c
TRTIME(D)
c
RATE = A®EXP(-B/T2)
c
5+ 1.0/
(1.0 ¢ (1.0 - X0 )*EXP( -3ATE * 20 =7 /%) )
c
C STORE THE SOLUTION IN TWE OIPUT as2ay
c
INT={J-1) "NSTAT
CIND*1)7S
10 CONTINUE
3
RETURN
£ND

Fig. 8. Description of subroutine F.

will terminate and write an error message describing
which arrays rquire enlargement.

5. SAMPLE PROBLEM

To illustrate the use of the FAST program, a simple
example consisting of a single, autocatalytic reaction,

Ky
A+ Xe2X
kr

is considered. The concentration of X is governed by

dix)

o = WIAIX]- K XD

(X0 = (X]o.

If we assume that [A] is constant, the dimensionless
concentration -

O kr[X]
(Xi= ks[A]

can be defined, and the differential equation solved to
yield

[X]={1-(1-[X]g") Ay,

For the purposes of sensitivity analysis, we express X, in
the Arrhenius form,

kf = Bf e_cf’T.
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Table 3. Input fields and formats

7281 j

1 72

Problem Description Cards

Col 1-72. Descriptive text. Number of cards is optional. The end
of the text is indicated by a * in ¢ol 1 of the last description card.

Control Card

1515
1 75
Col. Descripticen
1-5 number of analysis times
6-10 number of input parameters
11-15 number of output state variables
16-20 number of terms in the partial variance sum (default 2)
21-25 option to print amplitudes
26-30 option to print parameter combinations
31-3%5 option to print state variable outputs
36-40 multiplier N in N=Nwpa, 1 (default 2)
41-45 option to print unsor%ed partial variances
46-50 option to save state variable outputs on disc file
51-55 option to reanalyze state variable outputs
56-60 option to plot partial variances
61-65 option to renormalize partial variances for plotting
66-70 option to print partial variances during reanalysis
71-75 option to print sorted partial variances during plotting
Analysis Times (Optional)
F10.0
1 10
Col Description
1-10 Analysis time. Number Of cards required is determined by

Col

1-5

6-10

11-20
21-30
31-80

the number of analysis times entered in the control card.
(These cards may be omitted if the number of analysis
times entered on the control card is zero.)

Parameter Card

15 15 F10.0 F10.0 S0Al

Description

Parameter number. This number is the array index used for
the P array in Subroutine F. The frequency assignment is
done in the order in which the parameter cards are input.

If an alternative frequency assignment is desired, the order
in which the parameter cards are input should be changed,
but not the parameter number.

Search curve type
8 = Fixed Parameter

1 = Small Parameter Variation
2 = Large Parameter Variation
3 = Parameter Variation Expressed as Fractional Change

Lower parameter limit or fixed parameter value
Upper parameter limit (type 1) or scale factor (types 2 and 3).
Parameter Description.
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Table 4. Files used by FAST program

Name Unit Number Description

1DOUT 1 Reanalysis file. When the option to save
the results is used, the output values are
stored on this file. When the reanalysis
option is used, the state values from this
file are read as input.

IDISC 2 Save file. When the save option is on, all
other program information including the par-
tial variances is written to this file for
later use.

IDPLT 3 Plot file. All information required for
plotting is stored on this file during pro-
gram execution and read back during the
execution of the plot routine.

ICARD 5 User's input file.

IPRIN 6 Output print file.

Table 5. FAST program array default sizes
Defauit Size
Array Description Size Variable
IVARB Variable Numbers 100 NVMAX
1TYPE Variable Types 100 NVMAX
UBAR Nominal Values 100 NVMAX
PBAR Mean Values 100 NVMAX
PV Variances 100 NVMAX
INDEX Sert Arvay 100 NVMAX
PARM Parameter Combinations 100 NVMAX
DESC Parameter Descriptions (48,100) NYMAX
IW Frequency Set 50 NPMAX
TIME Analysis Times 50 NTMAX
OUTPT Parameter Qutput 200 NOMAX
FI Output for A1l 2000 NSMAX
Parameter Combinations
NVMAX Max Number of Input Parameters 100
NPMAX Max Number of Variable Parameters 50
NTMAX Max Number of Analysis Times 50
NOMAX Max Storage for Each Parameter Combination 200
NSMAX Max Storage for A1l Parameter Combinations 2000
NEQN Number of Solutions for Each Combination no Timit
NSTAT Number of State Variable Outputs no limit
We wish to examine the sensitivity of [X] to (X, (4], % Ak,»,
By, Gy, and T from t =0 to £ =2. The nominal values and ok,

ranges of variation of these five parameters are given in
Table 6.

Figure 9 shows the first-order normalized sensitivity
coefficients as a function of time evaluated at the
nominal values of Table 6. These are defined by

Figure 10 presents the partial variances for the 5
parameters as determined by the FAST method with the
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Table 6. Parameter variations for autocatalytic system

Range of Uncertainty

Parameter Nominal Value (:5:)

[)(]o 0.15 0.1425 - 0.1575

[A] 1.73 1.644 - 1.817

Bf 1.0 0.95 - 0.105

Cf 165.0 156.8 - 173.3

T 300.0 285.0 - 315.0
a } T T
— T T
= |
] ;
S |
s a
Y
S Q75
O
>
=
Z osr
Lang
%)
2z
]
7]
o o025 [A]ond B, =
3 :
~ Ceond T
]
<
=
g o) 1L | | 1
b4 ] 02 0.4 0.6 0.8 1

i
Fig. 9. First-order sensitivity coefficients for the reaction A+ X22X
1
[¥p) —_
a 0.75
O
=z
<
S
> 05 +
-
<
(=
&
a 0.25 -
CFund T
0 1 1
o] 0z 0.4 0.6 0.8 1

Fig. 10. Partial variances from the FAST method for the reaction A+ X=22X

+ 5% variations of Table 6 using search curve 1 of Table
2. We note first that the first-order sensitivities of [X] to
variations in [4] and B, are identical because these two
parameters appear as 2 product in [X]. The same
behavior is noted for C; and 7. As long as the un-
certainty ranges chosen for these two sets of parameters

*

are the same, the partial variances of [A] and By and.C,
and T are identical, as seen in Fig. 10. The qualitative
results of both the first-order sensitivity coefficients and

‘the FAST partial variances are the same, although the

relative magnitudes differ somewhat. A difference in
relative magnitudes is expected since the first-order sen-
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sitivity coefficients are computed at the nominal values,
whereas the FAST partial variances involve simul-
taneous variation of all five parameters over their range
of uncertainty, in this case *5%. Both sets of cal-
culations show that [X] is most sensitive to [A] and Bj.
Note that the FAST method shows that the sensitivity of
[X] to [XTo close to t =0 is larger than indicated by the
first order sensitivity coefficient.

Acknowledgement—This work was supported by U.S. Environ-
mental Protection Agency grant R805537.

NOMENCLATURE

constant chemical species

jth Fourier cosine coefficient for the ith state variable
pre-Arrhenius rate term

jth Fourier sine coefficient for the ith state variable
activation energy term

frequency set generation parameter

general system function

transformation function

forward rate constant

ith uncertain parameter

lower limit of ith uncertain parameter

upper limit of ith uncertain parameter

reverse rate constam

number of uncertain parameters

number of state variables

number of Fourier coefficients

probability distribution of the uncertain parameters k -
quadrature index

number of numerical solution points

ratio of parameter lower limit and mean value

ratio of parameter upper limit and mean value
Fourier space variable

s; discrete Fourier space variable
S}A partial sensitivity of the ith state variabie to the jth
uncertain parameter
T temperature
x state variable
x¢ the value of the ith state variable at the kth numerical
solution point
X chemical species
X normalized chemical species
@; search curve parameter
B; search curve parameter
a;® partial variance of the ith state variable
p; normalized linear sensitivity coefficient for the ith state
variable
w; Fourier frequency assigned 1o the jth parameter
#; nominal value of the jth uncertain parameter
1, frequency set generation parameter
() ensemble average quantity
- time average quantity
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10.5 Application of the Fourier Amplitude Sensitivity Test to
Atmospheric Dispersion Problems

A major advantage of the Fourier Amplitude Sensitivity Test (FAST),
introduced in the previous sectiom, is that it enables a formal study
of the relative influences of large parameter variations in nonlinear
systems. As such the method is ideally suited for examining the effects
of parameter uncertainties omn the predictions of atmospheric dispersion
models. In this research the system of most interest is the atmospheric

diffusion equation.

%‘;— + V+(uc) = Ve (KVe) + R(c) (10.22)

This equation describes the formation and transport of photochemical

air pollution. The parameters and processes of most importance are:
advective tramsport by the flow field, u, turbulent diffusion charac-
terized by the eddy diffusivities, K, and the chemical reactions R(c).
Tn addition the source emissions, which enter the system (10.22) through
the boundary conditions, have a major impact on the calculated results.
This section discusses the application of two sensitivity analysis
methods to a simplified representation of the full, three-dimensional

airshed model.

While a complete sensitivity analysis of (10.22) has not as yet
been undertaken, some preliminary steps have been made by studying

individual elements of the basic model. For example, Falls et al. (1979)
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investigated the influence of parameter variations on the predictions
of a photochemical reaction mechanism. The results of that study are
presented in Section 10.6. Koda et al. (1979a) used the FAST method to
examine the effects of uncertainties in specification of the vertical

turbulent transport. The system considered in their work was the one-

dimensional form of (10.22)

e _ 3 . %
3t 3z zz 3z (10.23)

with the boundary and initial conditions given by

Jc

Kzz s = Q (10.24)
z =0
ac =0
-— = (10.25)
9z
z =2,
L
c(z,0) = 0 (10.26)

The principal finding from their study was that the concentration predic-
tions ywere most sensitive to variations of the turbulent diffusivity,
K(z), close to the surface. In passing it is worthwhile to mention that
this physically realistic result was also found when the direct and

variational sensitivity analysis methods were applied to the problem.

Perhaps the most commonly employed form of (10.22) is the simple
Gaussian plume approximation introduced by Pasquill (1961) and implemen-

ted in the well known workbook of Turner (1970). This formulation
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is a good example to illustrate an application of.the FAST method
because the model can be solved analytically, it is widely used in
practice and has not been subjected to extensive sensitivity analyses.
The model can be derived from (10.22) by invoking the following
assumptions: steady conditions, a uniform wind speed, u, in the x—
direction, constant diffusivities, no chemical reaction and that
transport in the flow direction is dominated by advection. Under these
restrictions (10.22) can be written in the form

2 82c

u—=K_ —+K _—% (10.27)

oy 822
A suitable set of boundary conditions fo; an initially pollutant free,
unbounded atmosphere with no absorption at the ground is given by

dc

- KZz Sz =90 (10.28)

c(x,y,2)=0; x,y>+ (10.29)

If a single source of strength Q is located at an elevation H above

the surface then the solution of the system (10.27- 10.29) is given by

2 ) 2
—-——EL———-exp - uyz exp {- u(z-H) + exp{-— u(zH)
4ﬁxVKnyzz 4XKyy AXKzz ZFXKzz

C(Xay’z) =

(10.30)



In most applications the plume spreading is characterized in terms of
the distance downwind from the source and as a result the diffusivities

employed in (10.30) are often replaced by expressions of the form

s % =2k ¢t (10.31)
y vy
2
o ° =2k t (10.32)
Z zZZ

The basic Gaussian plume model for the ground level concentration is
then given by

g 2 (10.33)

2
1
c(x,y) = —nquo exp |- 5(%)_ exp | - %(?)
vz | .

The dispersion coefficients Oy and o, are determined from field experi-

ments and are typically expressed in the form (Gifford, 1976)

0 = ax (10.34)

where a and b are constants which depend on the atmospheric stability.

The coefficients used in the Turner Workbook are based on the initial
work of Pasquill (1961) and Gifford (1961). While the values are often
applied to a large range of stability and wind speed conditions, they
were originaily intended for use only under rather limited conditionms:
wind speeds greater than 2 m/s, nonbuoyant plumes, flow over open
country and downwind distances of only a few kilometers (Gifford, 1976;

Pasquill, 1976). 1In a study of the Gaussian model, Weber (1976) has
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shown that the dispersion coefficients and the release height are some

of the most critical parameters. Miller et al. (1979) reached a

similar conclusion after an examination of field measurements. In an
attempt to improve the predictions Lamb (1979) used Lagrangian similarity
theory to describe the dispersion under unstable conditions. So far
relatively few systematic studies have been made of the influence of

parameter uncertainties on the predictions of the Gaussian model.

Because of the simple form of (10.33) it allows a straightforward
evaluation of the partial derivatives of the concentration with respect

to the different model parameters. These expressions are given by:

ac c
— = = 10.35
30 - Q ( )
e & (10.36)
Ju u
=< - S (10.37)
VA
iC c v .2
e (= N (10.38)
v y y
- oyt o (10.39)
“z z z
i = ax then
e 3¢, b
= T (Sd) X (10.40)



I~
n
(%]

(10.41)

where 0 can be either oy or o _. Given the system (10.35 - 10.41 ) it is
possible to define a set of normalized sensitivities at each downwind

distance.

dc(x) |
! ok Ak

pi(x) = ; i=1,2,...,m (10.42)
i de(x) b ’

The expressions, %ﬂx), are analogous to the partial variances associated
with the FAST method, however it is important to note that the partial

derivatives are a local representation of the model sensitivity. The

conditions chosen for the study are shown in Table 1

0.2,

e

Figures 10.6-10.8 depict the results of three calculations, two
involve small perturbations and the other large variations in the model
parameters. The first two cases were chosen to provide a means of
comparing the FAST method with the linearized approximation (10.35 -
10.41). As expected both approaches produced similar results. Close
to the source the major influence on the ground level concentration
is from the vertical dispersion and in particular the coefficient b(cz).
Further downwind, at the location of maximum impact, the model predictions

are most influenced by the horizontal dispersion and the source height.



TABLE 10.2

Parameters Studied in Gaussian Plume Model

PARAMETER (k) NOMINAL VALUE k{(0) LARGE PARAMETER RANGE
Source Strength (g/s) 100 50 - 200
Wind Speed (m/s) 5 2.5 - 10
Release Height (m) 10 5 - 20

a 32.0 16 - 64
b .
o Z(m) = ax
b 0.84 0.42- 1.68
a 67.9 34 - 136
b
g (m) = ax
ki b 0.93 0.47-  1.86

Note: the o, and o values correspond to Pasquill-Gifford stability
class D and Rave been extrapolated from Turner (1970).
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In the far field, dispersion still dominates the concentration levels
however the effects of wind speed and source strength are more apparent.
The oscillation in the sensitivity coefficients assoclated with o,
arise from the sign change which occurs in (10.42) when the downwind
distance, x, exceeds the value (H/a)l/b. The only major difference

between the small and large variation cases is that the relative roles

of Gy and Oz are reversed.

The results of the sensitivity analyses have important practical
consequences. For the chosen condition both the effective release
height and the dispersion coefficients have a major impact on the
ground level concentration. Each of these parameters is strongly
influenced by the vertical temperature structure. As a result the
parameters, and in turn the model prediction,are quite dependent on
the accuracy of the procedures adopted to characterize the atmospheric
stability. Considering the known limitations of the Pasquill-Gifford
stability classification scheme the findings of this study suggest that
more attention needs to be given to developing better estimates of the
plume rise and turbulent dispersion coefficients. Additional work
is required to analyze the sensitivity of the complete atmospheric dif~
fusion equation. The following section presents a detailed evaluation

of the chemical reactions embedded in the airshed model.
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Sensitivity and Uncertainty of Reaction Mechanism for

Photochemical Air Pollution

(Reprinted from Int. Journal of Chemical Kinetics, 11, 1137-1162.)
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Sensitivity and Uncertainty of Reaction
Mechanisms for Photochemical Air
Pollution

ANDREW H. FALLS, GREGORY J. McRAE, and JOHN H.
SEINFELD

- Department of Chemical Engineering, California Institute of Technology, Pasadena,
California 91125

Abstract

A sensitivity/uncertainty analysis is performed on a mechanism describing the chemistry
of the polluted troposphere. General features of the photochemical reaction system are
outlined together with an assessment of the uncertainties associated with the formulations
of mechanistic details and rate data. The combined effects of sensitivity and uncertainty
are determined using the Fourier amplitude sensitivity test (FAST) method. The results
of this analysis identify the key parameters influencing the chemistry of NOg, O3, and PAN.
Based on these findings, a series of recommendations are made for future experimental kinetic
studies.

Introduction

A key problem underlying the development and evaluation of kinetic
mechanisms for atmospheric chemistry is determining the sensitivity of
the concentration predictions to those uncertain aspects of the reaction
scheme. Such a determination can serve as a valuable guide for future
experimental studies and for identifying those parameters that, when varied
within accepted bounds, will be most influential on the predictions of the
mechanism.

Although the qualitative aspects of the chemistry of the polluted tro-
posphere appear to be reasonably well understood, there are many im-
portant details that still need to be investigated before a complete quan-
titative understanding of the photochemical smog system is possible.
Several groups [1-7] have formulated chemical reaction mechanisms for
polluted tropospheric chemistry. Some of these are based on specific
surrogate hydrocarbon chemistries [1-4]. In others, attempts have been
made to simulate the complex ambient atmospheric system by representing
the general features of the hydrocarbon chemistry [2,5-7]. All mechanisms
contain aspects of uncertainty, whether in unknown rate constants, in the
importance of competing reaction paths, or in the manner of representing

International Journal of Chemical Kinetics, Vol. X1, 1137-1162 (1979)
© 1979 John Wiley & Sons, Inc. 0538-8066/79/0011-1137%$01.00
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the reaction of a generalized species. The measure of the accuracy of a
mechanism is usually based on the extent of agreement between predicted
concentration profiles and those generated experimentally in smog
chambers.

Even though the mechanisms [1-7] currently under study differ in de-
tails, the basic structure and qualitative behavior of each is similar. Thus,
a separate study of the sensitivity of each of the mechanisms is unneces-
sary.

The object of this work is to examine closely the sensitivity of mecha-
nisms for photochemical smog to those aspects of the chemistry that are
currently uncertain. In doing so, it is hoped that certain general features
of the photochemical system will emerge; features that are common to all
mechanisms and for which estimates of the effect of uncertain parameters
will be valuable. A similar study was carried out by Dodge and Hecht [8]
in 1975 using the Hecht-Seinfeld-Dodge mechanism [9]. The mechanism
of Falls and Seinfeld [7], which includes the latest available information
on rate constants, reactions, and has all of the major features present in the
lumped mechanisms of Whitten and Hogo [2], Gelinas and Skewes—Cox
[5], and Martinez et al. [6] is used in this work. Sensitivity analyses are
carried out using the Fourier amplitude sensitivity test (FAST) method
of Shuler et al. [10], as described by Koda et al. [11). Only a brief discussion
of the method is given here; extensive details are available in the cited
references.

This work begins with a brief discussion of the chemistry of photo-
chemical smog, aimed at elucidating the general structure of the system
within which mechanistic and kinetic uncertainties will be evaluated. Next,
based on published reports of measured rate constants and product dis-
tributions for individual reactions, the uncertainty associated with each
element of the Falls and Seinfeld mechanism [7] is estimated. The sensi-
tivity analysis method is then described briefly, with emphasis on the im-
plementation of the parameter uncertainty bounds and interpretation of
the results. Finally, the results of the sensitivity analysis are presented
and discussed in detail, leading to a ranking of the most influential elements
of the mechanism based on the combined effects of uncertainty and sen-
sitivity.

Photochemical Smog Chemistry

NOg, NO, and O; participate in the well-known cyclic set of reactions

1
NO; + hy = NO + O(3P)

2
OCGCP)+ 02+ M—>03+M



462

PHOTOCHEMICAL AIR POLLUTION 1139

3
N0+03—>N02+02

In the absence of significant competing reactions, a photostationary state
is reached among reactions (1)-(3) in which the steady-state ozone con-
centration is given by [O3)s = k1{NOg]/k3[INO]. However, if a process other
than that in reaction (3) can convert NO to NO; without consuming a
molecule of O3, the ozone concentration will increase due to the increase
in the NOs/NO concentration ratio.

The two main processes by which NO is converted to NO,, without the
loss of ozone, involve the hydroperoxy radical HO; and peroxyalkyl radicals
RO via

HO; + NO — OH + NO,
R02 + NO—- RO+ N02

Hydroperoxy and peroxyalkyl radicals arise in the photochemical smog
system from the photolysis and oxidation of hydrocarbon species.

One source of peroxy radicals is from the photolysis of aldehydes that
originate in the atmosphere both from emissions and as the products of
chemical reactions. Formaldehyde photolysis, at wavelengths less than
370 nm, proceeds by either a molecular or a radical path:

HCHO + hv — Hy; + CO
—H+ HCO

Both hydrogen atoms and formyl radicals react rapidly with Oz to produce
HO5 and HO5 + CO, respectively. (There is still some disagreement con-
cerning the HCO-0; reaction products; however, most evidence indicates
that the products are HOs and CQ.) Higher aldehydes also photodissociate
to give alkyl and formyl radicals:

RCHO + hv — R + HCO

In addition to their photolysis, the reaction of aldehydes with OH serves
as an important radical source and chain carrier. Hydroxyl radicals are
generally thought to abstract the aldehydic H atom from aldehydes:

OH + RCHO — RCO + Hy0

Oxidation of hydrocarbon species provides another source of hydroperoxy
and peroxyalkyl radicals in the atmospheric system. The key species in
the initial oxidation of hydrocarbons is the hydroxyl radical, the major
sources of which are indirect chain-related processes such as the photolysis .
of aldehydes and the reaction of O; with olefins which lead to OH radicals
through the reaction of HOy with NO. Minor sources of the hydroxyl
radical include the photolysis of nitrous acid, the photolysis of hydrogen
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peroxide, and the reaction of water with singlet oxygen atoms (O(1D)) which
originate from the photolysis of ozone:

HONO + hv — OH + NO
H,09 + hv — 20H
O3+ hv — O(D) + 0201 Ag)
O(D) + H,0 — 20H

Hydroxyl radical attack on hydrocarbons leads eventually to a variety
of peroxy radicals, such as peroxyalkyl, peroxyacyl, and hydroxy-peroxy-
alkyl radicals. These radical species convert NO to NO,, thereby producing
ozone, and also serve as sources of alkoxyl, acyl, hydroxy-alkoxyl, and hy-
droperoxy radicals.

Major Uncertainties in Photochemical Smog Chemistry

With the recent elucidation of the chemistry of the reactions of OH and
HO; with NO and NO; [12,14,15], the inorganic portion of the photo-
chemical smog mechanism is now, by and large, well understood. Table
I'lists the mechanism under study along with its associated uncertainties.
Figure 1 shows the structure and species interaction within the reaction
mechanism. Uncertainties to be discussed here include:

(a) Photolysis rates

(b) Alkane—OH product distributions

(¢c) Olefin—OH and olefin—O3 product distributions

(d) Aromatic chemistry

(e) Alkoxyl radical reactions

(f) RO,/NO, reactions

A major uncertainty in the mechanism lies in the values of the photolysis
rate constants. For analyzing smog chamber data, photolysis rate constants
relative to the reported value for NOs are frequently used. Photolysis rate
constants as a function of wavelength can be calculated from

kj = J;waj(}\)@(}\)l()\)d}\

where
k; = photolysis rate constant for species J
o;(N) = absorption cross section of species j
$;(A) = quantum yield for the photolysis of species j
I(\) = actinic irradiance

Data applicable to some atmospheric systems have been compiled by
Schere and Demerjian [26]. For species such as NOy, HONO, and Os, for
which extensive experimental determinations of absorption cross sections
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Figure 1. Flow diagram of Falls and Seinfeld reaction mechanism.

and quantum yields have been accomplished, photolysis rate constants are
thought to be fairly reliable. However, since cross section and quantum
yield data for formaldehyde, higher aldehydes, and alkyl nitrites are much
less well characterized, many photolysis rate constants are subjected to large
uncertainty. Of course, even if absorption cross sections and quantum
yields could be determined accurately for all photosensitive species,
uncertainties in atmospheric photolysis rate constants would still exist,
as meteorological conditions, clouds, dust, and aerosols cause unknown
variances in actinic irradiance.

Whereas rate constants in the inorganic portion of the mechanism are
known fairly well, many more uncertainties, both in reaction rate constants
and products, are associated with the organic reaction steps. Still to be
determined are product distributions and reaction rate constants for the
initial steps of the reactions of OH and hydrocarbon species, the largest
uncertainties lying in the routes of the various radical species produced.
For example, although rate constants for alkane-OH reactions are well
established, the ratio of internal to external abstraction for all alkanes is
not known. Addition to Oy to form peroxyalkyl (RO2) radicals can be
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considered as the sole fate of the alkyl radicals first produced in alkahe-OH
reactions, but after the formation of alkoxyl radicals through the conversion
of NO to NO,, the reaction'-mechanism becomes uncertain. Alkoxyl rad-
icals can decompose, react with Os, isomerize, or react with NO or NOs, with
the importance and rate of each reaction path depending on the nature of
the alkoxyl group. Even for the most studied of the alkane—OH reactions,
the relative rates between decomposition, isomerization, and reaction with
O2, NO, and NO, for alkoxyl radicals have not been measured, but must
be estimated [3]. The n-butane-OH reaction mechanism, for which the
ratio of internal to external abstraction is known to be about 86-14 [3], gives
rise to sec-butoxy and n-butoxy radicals. Various possible reaction
pathways for these two radicals are:

decomp
o, ~ CHCHO, + CH,CHO
2

(RO,) (RCHO)

0]

o, |

HO, + CH,CCH,CH,
(02 : OH

isom.

CH,CH,CHCH, —————— CH,CHCH.CH,0,

0,
\ (RO,)
(I)NO
\_NO_, CH,CH,CHCH,

(RONO)
ONO.,

CH,CH,CHCH,
(RONO.)
and

decomp

5 HCHO + CH,CH,CH.O,
(RO,
HO, + CH,CH,CH.CHO
/ (RCHO)
1S0Im.

( 2)
02
o~ HOCH.CH,CHCHO.
\ ! (RO.)
N0, CH,CH.CH,CH,ONO

CH,CH.CH,CH.O-

(RONO)
CH,CH.CH,CH.ONO,
(RONO,)

NO
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Less well understood than alkane reaction mechanisms are olefin oxi-
dation processes. Whereas reactions of alkanes with O3 could be neglected,
both olefin—-OH and olefin—O3 reactions occur to a significant extent.
Olefin-OH reactions may proceed by addition or abstraction [35]. For
smaller olefins, the addition path predominates. However, the abstraction
fraction increases with the size of the olefin. Along the addition path for
terminally bonded olefins, there is uncertainty as to the ratio of internal-
to-external addition. Similar to alkyl radicals, the hydroxy-alkyl radicals
formed in the initial OH addition to olefins are thought to immediately add
05 to form hydroxy-peroxyalkyl radicals and thereafter react with NO to
give NO, and hydroxy-alkoxyl species. The fate of the hydroxy-alkoxyl
radicals is subject to speculation, although the analogous alkoxyl reaction
paths of decomposition, isomerization, and reaction with NO, NOo, and
Q,, are the most likely possibilities:

decomp

HCHO + RO.
OH OH
decom™P_ RCHO + HC- HCO,
0,
R R
OH O (RO.)
. o, I
TH T ’ HO, + RCH—CR
RCH—CL haaiB ¥
\R ©,) RO
OH ONO
(RO)
NO . RCH—CH
R
(RONO)
OH ONO.
RCH—CH
R
(RONO.)

Of some importance in the photochemical smog system is the oxidation
of olefins by ozone. The initial rate-determining step in the attack of ozone
on the double bond of olefins is the formation of a molozonide, which, as
the ring opens, results in a rapid equilibrium between the two possible forms
of the oxy-peroxy biradical. The primary uncertainty in the olefin—ozone
reaction mechanism lies in the fate of the oxy-peroxy biradical. Currently
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it 1s thought that for lower olefins the biradical decomposes according to
the Criegee mechanism of solution phase ozonolosis. However, a- and
B-hydrogen abstraction mechanisms have also been proposed [27]. Figure
2 depicts the Criegee mechanism for the gas-phase ozonolosis of a general
olefin, with reaction products analogous to those proposed by Dodge [28]
for the propylene—O3; mechanism.

Although much work has been devoted to the understanding of alkane
and olefin systems, comparatively little research has been devoted to the
study of atmospheric aromatic mechanisms. Recently, absolute rate
constants have been determined for the reaction of OH with a series of ar-
omatic hydrocarbons over a range of temperatures [29]. The initial aro-
matic—OH reaction step can be either abstraction or addition to the ring.
At room temperature, the percentage of reaction proceeding by abstraction
is on the order of 2-20%, depending on the individual hydrocarbon [29].
The aromatic-OH adduct presumably reacts with other atmospheric
species such as Oy, NO, or NO,. In addition, opening of the aromatic ring
presumably occurs at some point in the atmospheric chemistry. Hendry
[30] has postulated an aromatic mechanism that accounts for ring cleavage
as well as for the formation of oxygenated species such as glyoxal, HyC50o,
seen in smog chambers.

The aromatic—-OH reaction products in Table I have been represented
simply as ROs and an oxygenated species that is lumped with the aldehydes.
Because the atmospheric chemistry of aromatics is poorly understood, little
can be accomplished by speculating on reaction products and mechanisms
at this point. For this reason, a sensitivity/uncertainty analysis associated
with aromatic species has not been incorporated into this study.

The inherent uncertainty of the decomposition, reaction with O,, and
isomerization of the alkoxyl and hydroxy-alkoxyl radical class in the present
mechanism [7] has been concentrated into one reaction step:

RO — o«HOz + (1 — @)RO; + SHCHO + yRCHO

As seen from the earlier discussions of alkoxyl radical behavior, RO always
gives rise to either HO; or ROs in any of the decomposition, isomerization,
or Oy reaction pathways. Hence, the stoichiometric coefficients repre-
senting the fraction of HO, and RO; found in the lumped RO reaction
should add to 1. Since the RO lumped species represents a large class of
different-sized radicais and because splits between reaction paths for even
specific radicals are unknown, « can have a value in the range 0 to 1. Many
RO reaction routes produce aldehydes with some yielding two, as the one
suggested by Martinez et al. [6]. Thus,0 <8<1and0 <+~ <1. Since the
composition of the RO radical pool is continually changing during the course
of a photooxidation, the actual values of «, 8, and v are functions of time.
Thus, the selection of constant values of these coefficients introduces un-
certainty.
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TABLE L. Unecertainties associated with reaction rate constants in the Falls and Seinfeld

mechanism [7].

Sensi-
Nominal tivity
rate constant Refer- Uncer-
Reaction ppm-min_ units Uncertainty ence tainty
(3¢7¢) Range® Analys
1. N02+hv ~ NO+0(3P) variable k1 = +20% (est.) =*
2. 0(PP)+0,4M + O+ 2 03105 1.72x10< k, < 2.38x107° 12
3. 03#ND = NO,+0, 2.55x10! 18010 < k, < 3.60x100 12
4. NO,HO(3P) ~ NO+O, 1.32x10% 1.15x10° < k, < 152x10® 12
5. RO,+0(*P) ~ NO; 3.52x10% ¢ 2.2200° < kg < 5.58x10° 12
6. NO+O(?P) ~ NO, 3.87x10° 2.45x10° < kg < 6.13:10° 12
7. NOZ+05 =+ NOL+0, 5.37x1077 4.26x107 < k) < 6.76x1070 12
8. NOG*NO 20, 2.72x10° 2.1210% < kg < 3.31x10° 13
3. NOZHNO, + N,0 3.69x10% 1.06x10° < kg < 1.2x10" 13
10. N,0g » NOS#NO, 1.21x10* - 13
1. N,0G+H,0 + 2HOND, <1.45x10_z - 12
12. NONO,+H,0 ~ 2HOND 2.11x107° . 12
13. HONO*HONO = NO*NO,##,0  1.38x107° . 12
14. 03+hv -+ 02+0(‘D) variable kyg = 2307 (est.)
15. 03+hv -+ 02+O(3P) variable k15 = 4307 (est.) =
16. 0(ID)+M ~ O(*P)+M 4.14x10° 3.2900% < ko <5210t 12
17. 0('D)+H,0 - 20H 3.34x10° 2.65x10° < kpp < 4.2110° 12
18. HO,+ND, ~ HONO+O, <107 kg - 14
19, HO,#NO, + HO,NO, 1.58x10° - 15
20 HONO, = HO,*NO, 7.5 3.3 < kg < 1701 15
21 HO,*ND ~ NO,+OH 1.18x10% 9.59x10° < ky < 1.39x10° 12
22. OH+NO » HONO 1.7ax10% - 12
23. OHeNO, + HONO, 1.5x10% © 13110 < k,y < 2.0710% 12 *
24. HONO+hv -+ OH+NO variable kog = 230% (est.) *
25. CO+OK ~ CO,+HO, 4.36x10° 3.46x10% < ko < 5.49x10° 12
26. OH+HONO ~+ H,0+NO, 9.59x10° 9.15x107 < kye < 1.00x10° 12
27. HOp+HO, » H,0,+0, 3.63x103 1.82x10% < kyy < 7.26x10° 12
28. H202+hv + 20H variable k28 = +30% (est.)
29. OHOy + HO,40, 8.04x10° 2.03x10 < kp0 < 1ox10? 12
30, HO,*04 + OH+20, 3.04 1.52 < kyy < 6.08 12
31. HCHO+hv + 2HO,+CO variable k31 = +305 (est.) *
32. HCHO+hv + H2+CO variable k32 = +30% (est.) *
3. HCHOYOH + HO,+CO 2.03x10% 1.62x10% < k.. < 2.56x10% 12

33
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TABLE L. (Continued)

Sensi-
Nominal tivity/
rate constant Uncer-
ppm- mlg units Uncertainty Refer- tainty
Reaction (30°¢C) Range® ence  Analysis
34, RCHO+hy - R02+H02+C0 variable kqg = +50% (est.) *
35. RCHO+OH ~ RCOs 2.1x10" - 16
36. OLE+OH - RO2 variabied - 17
37, OLE+D - RO,+RCO, variabled - 17
38. OLE+0y » 0.55RCHC variabled 0 <e<1,0<2<1, 17 *
+(1-0.58)HCHO 0<nc<l
+{0.5¢(1-0.5¢) (¢ 21)+06]H02 0202l
+0.5¢(28+n) (1-0. c)ROZ Nominal values
+0.5¢ g(l 0.5%)0H c=0.8,£=0.68,n=0.17
+0.5en(1-0.5¢ R0 4 §=1.0,0=0.1
39. ALK+0H - RO2 variable - 17
40. ALK+0 ~ RO,+OH variable® - 17
4 3 4
41. C2H4+OH - ROZ 1.14x10 7.06x107 < k41 < 1.87x103 12
42. C2H4+0 - R02+HCO 1.24x103 1.03)(103 < k42 < 1.49x10 12
43. ARO+OH = RO,+RCHO variabled .
5 Nominal Values
44. RO ~ aHO+(1-a)RO, 3.6x10 0O<ac<l a=1 3 *
0<g=xl g=1
+8HCHO+yRCHO 0 E E 1 +v=0
45. NO+RO - RONO 4.9x104 k45 = (3.1x104-1.55x105) 18-20 *
46. RONO+hv - RO+NO variable k46 = 2303 (est.) *
4 - 2 *
47. NOZ+RO - RON02 1.55x10 k45(k47+k45)- (1.2-2.7) 21-23
' 3 -
48. h02+RO -~ RCHO+HONO 1.35x10 k47/k48 = (0.08-0.23) 21-23 *
3 -
49. N02+RO2 - ROZNO2 5.5x10 k49 = (1600-5500) (est.) *
50. N02+RO2 - RCHO+HOAO2 5.5 (est.) -
51. RO,NO, = NO,*RO, 0.5 (est.) 0.55 < kg; < 40.0 37 *
52. NO+RO, - NO,*RO 1.18x10° (est.) 3000 < kg, < 12000 (est.) =
3 = -
53. N0+RCO3 *,N02+R02 3.77x10 k54/k53 = 0.54:0.17 25
54, NO,*RCO5 =+ PAN 2.03x10° 25
55. PAN -~ N02+RCO3 0.055 0.0039 < k55 < 0.78 25
56. O3 -+ wall Tloss variable®
57. R02+R02 - 2RO+02 196.0 50.0 < k57 < 600.0 38 *

a Uncertainties determined from reliabilities in rate constant measurements given in original
references. Where no uncertainty was reported, either an estimate was made or the uncer-
tainty neglected.

b Units of rate constant are ppm~?min~?.

¢ Pseudo-second-order rate constant for 1 atm air.

d Rate constants for the reactions of lumped olefins, alkanes, and aromatics with OH, O,
and O3 were taken to be average mole-weighted ratio, based on initial compositions of each
hydrocarbon class. Thus k= Z;k;n;/Z;n; where k) is the lumped hydrocarbon rate constant,
k; the individual rate constant for hydrocarbon i, and n; the number of moles of hydrocarbon
{ in the initial lumped mix.

¢ Depends on smog chamber experiment, Winer [36].
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TABLE II.  Reactions in the RO,-NO, system.

NO NO,
RO RO + NO - ROND? RO + NO, = RON02b

hu -+ RCHO + HONO

~ RCHO + HNO

o d
RO, RO, + NO = NO, + RO RO, + NO, 7 RO,NO,
~ ROND, ~ RCHD + HONO,
0,
~n € f

RCO;  RCO; + KO~ NO, + RO, + CO, RCO5 + WO, 2 PAN

# The primary pathway for the alkoxyl-NO reaction is RO + NO — RONO. Rate constants
for this series of reactions have not been measured directly, but have been calculated from
measured rates of the reverse reaction and thermodynamic estimates. Batt and co-workers
(18] obtained rate constants for several of the above reactions that fall in the range of 3.1-6.2
X 10 ppm~'min~!. Both Mendenhall and co-workers [19] and Batt and Milne [20] deter-
mined the rate constant for ¢-butoxyl + NO, obtaining 1.55 X 10° and 6.2 x 10¢ ppm~lmin~!,
respectively. Thus the probable uncertainty in an estimated value of a particular RO-NO
rate constant is a factor of 2-4. In addition to the path shown above there is an abstraction
reaction, the fractional occurrence of which depends on the alkyl group. The abstraction
fraction can be estimated based on the data of Batt and co-workers [18].

b Two reaction paths for alkoxyl-NO; reactions exist, addition and abstraction. For
methoxyl + NO; the abstraction fraction has been estimated by Weibe and co-workers [2i]
to be 0.08 and by Barker and co-workers [23] to be 0.23. Rate constants for alkoxyl-NO,
reactions have been inferred from measured values of the ratio of the rate constants of al-
koxyl-NO to akoxyl-NOs reactions. Wiebe and co-workers {21] reported that for methoxyl
radicals this ratio is 1.2, whereas Baker and Shaw [22] obtained 2.7 for the same ratio. Baker
and Shaw [22] determined a ratio of 1.7 for t-butoxyl radicals. Absolute rate constants for
RO-NOq reactions are then obtained on the basis of RO-NO rate constants.

¢ The peroxyalkyl radical-NO reaction may proceed as shown. Conversion to NO to NGO,
occurs primarily by the first reaction. It has been postulated that the second reaction will
oceur a fraction of the time for longer chain peroxyalkyl radicals [n > 4]. Darnall and co-
workers {32] estimated the ratio ks/k; to be 0.09 and 0.16 for n = 4 and 5, respectively. Aside
from the HO»-NO reaction, rate constant values have not been measured for RO5-NO reac-
tions. A lower limit for the rate constants for these reactions can be estimated as 3 X 103
ppm~lmin~! based on theoretical considerations.

d Rate constants for the ROo-NO, reaction and the RO2NO; decomposition must be esti-
mated.

¢ Hendry and Kenley [31] report a value of 4900 ppm~'min~! for CH;C(0)Os+ NO, whereas
Cox and Roffey {25] found 3800 ppm~!min~!.

f The rate constant for the PAN formation step is determined by Hendry and Kenley [31]
to be 1500 ppm~*min~! and by Cox and Roffey [25] to be 2070 ppm~—!min=!. PAN thermal
decomposition rates are also reported by the two investigators.

Reactions in the RO, /NO, subsystem (Table II) are subject to degrees
of uncertainty for two reasons. First, the rate constants reported for spe-
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cific reactions in each lumped group differ among investigators. For in-
stance, different PAN formation and decomposition rates have been de-
termined by Cox and Roffey [25] and Hendry and Kenley [31]. Second,
since the composition of the lumped radical classes changes throughout
the degradation process of the different atmospheric hydrocarbon species,
it is difficult to select accurate rate constants for reactions of the RO,/NO,
system. The uncertainties associated with each reaction in the RO./NO,
network are summarized in Table II.

Sensitivity/Uncertainty Analysis

A sensitivity/uncertainty analysis can provide two different but related
types of information. By individually perturbing parameters a small
amount from their nominal values, say +5%, the absolute sensitivity of the
predictions of the mechanism can be ascertained. A sensitivity/uncertainty
analysis incorporates the same information and, in addition, takes into
account the degree of uncertainty associated with each parameter, thereby
generating a combined measure of sensitivity and uncertainty. Both types
of analyses are important. For example, a parameter to which the pre-
dictions of the mechanism are not especially sensitive may have such a large
range of uncertainty that, when all possible variations are considered, its
influence on the predictions is rather substantial. On the other hand, a
very sensitive parameter may have a small range of uncertainty, and
therefore its overall influence on the mechanism, considering both sensi-
tivity and uncertainty, may be lower than that of other parameters.

In many problems the uncertainties are such that linearized methods
are no longer applicable. The FAST method, which overcomes this re-
striction, has been developed by Shuler et al. [10]. The particular advan-
tage of this approach is that order of magnitude changes in parameter values
can be easily accommodated. Basically the procedure involves a simul-
taneous variation of all the parameters over their individual ranges of es-
timated uncertainty. Formally the parameters are ranked in the order of
importance by using normalized statistical measures called partial vari-
ances. These variances indicate the relative contribution of individual
parameters to uncertainties in model predictions. The FAST analysis
identifies the contribution of individual parameters to the total variance
in each predicted species concentration. To determine the sensitivity of
the mechanism, the method can be used with each parameter varied a small
amount from its nominal value. Detailed descriptions of the technique
are available elsewhere [10,11] and will not be repeated here.
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Discussion of Results

Two types of the sensitivity/uncertainty analysis were performed on
simulations of three different surrogate hydrocarbon smog chamber ex-
periments carried out at the Statewide Air Pollution Research Center at
the University of California, Riverside [33,34]. First, in order to ascertain
the absolute sensitivity of the predictions of the mechanism to each of the
reaction parameters being studied, runs were made in which all parameters
of interest were perturbed from their nominal values by £5%. In asecond
set of cases, the parameters were permitted to vary over their entire un-
certainty range, thus providing combined sensitivity and uncertainty in-
formation. The parameter values for these two cases are shown in columns
2 and 3 of Table I. Many of the reactions have been shown to have rela-
tively little influence on concentration behavior [8]. Thus, only those rate
constants of reactions for which an asterisk(*) exists in column 4 of Table
I were subject to variation in the studies to be described.

Effects of the parameter variations on predictions of NOs, Os, and PAN
were monitored. These output variables were chosen because air quality
standards exist for NO; and Os, and because NO; and Os reflect the major
features of the chemistry. To explore the effects of varying initial hydro-
carbon-NO, mixtures on the results of the study, smog chamber simula-
tions with a wide range of initial conditions were examined. Tables III-VIII
list the parameters and their partial variances, ranked according to their
effect on each of the output variables, for each of the analyses per-
formed.

TABLE III.  Parameter rankings for case 1,2 small parameter variations.

Time 60 min. 120 min. 180 min. 240 min. 300 min,

Rank Parameter Partial Parameter Partial Parameter Partial  Parameter Partial Parameter Partial
Variance Variance Yariance Variance Variance

OUTPUT VARIABLE: NO.
n 0.310 0.472 0.583
k 0.309 0.310 0.310

1 k k 0.354 0.320
2 ] k

3 k 0.193 k 0.080 ] 0.073

4 [} k

5 k k

a
0.233 k 0.286
0.200 [ 0.203

k 0.1 0.051 0.026 k

8 0.030 ] 0.025 0.017 k

0.077 0.074
0.056 0.051

* x~ m a x

CUTPUT VARIABLE: ©
0.363
0.196 0.297 0.305

k 0.317 a a
[3 k k
0.181 k 0.130 k 0.148 k
k [ 8
a k k

0.328 0.340 a 0.345

0.278 k 0.254

0.159 k 0.163
[ 0.150
k

0.035

0.120 0.102 0.106
31 0.083 o.0n 1 0.038

1 k
2 o
3 k
4 k 01N
5 k 0.032
OUTPUT VARIABLE: PAN

1 kz3 0.39
k?d 0.212

k 0.485 0.432
3
0.153 k
f
[

0.187 0.213

k k 0.386
a «
0.161 kg] 0.171 k
8 3
& k

0.230

k 0.350
3
0.181 k
8
k

0.245
0.183
0.153
0.020

3 0.128
g 0.035

0.078 0.110
0.026 0.025

0.135
0.019

(LIRS N
~

a Simulation: UCR 119J [32]. Initial conditions: [NOs] = 0.041; [NO] = 0.301; [OLE]
= 0.039; [ALK] = 0.358; [ARG] = 0.070; [ETH] = 0.043; [HCHO] = 0.038; [RCHO] = 0.023;
[HONO] (assumed) = 0.0; k1 = 0.32; simulated NO, peak time = 200 min; [HC/NO,Jo = 1.7
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TABLE IV. Parameter rankings for case 2,2 small parameter variations.
Time 50 min. 120 min. 180 min. 280 min. 300_min.
Rank Parameter Partfal Parameter Partial Parameter Partial Parameter Partial Parameter Partial
Yariance Yartance Variance Yariance Variance

OUTPUT VARIABLE: MO,
1 k3 0.264 K3y 0.378 Ky 0.377 a 0.459 o 0.575
2 k) 0191 a 0154 o 0.3 k3 0338 ky 0.265
3 s 0.139 Ky 0.112 g 0.108 8 0.105 4 0.095
4 ks 0.128 8 0.091 K 0.054 s 0.023 kg 0.015
5 . 0.086 %53 0.066 & 0.039 %29 0.020 & 0.013
QUTPUT VARTABLE: O,
1 K 0.473 K, 0.584 K 0.69% K 0178 0.839
2 a 0.278 a 0.263 o 0.187 “ 0.138 0.086
3 [ 0.086 K 0.072 2 0.0 [ 0.069 K,y 0.068
¢ 31 0.056 Ky 0.0y & 0.021 8 0.000 kg, 0.003
5 0.032 8 0.035 Ky 0.016 kg 0.003 & 0.002
OUTPUT VARIABLE: PAN
1
; Ky 0.270 k3 0.290  kyy 0.338 ka3 0.380  kyy 0.404

k| 0.216 Kyq 0.284 %31 0.306 ka1 0320 ky 0.304
3 Ky 0.186 X 0.219 kK 0.199 X 0.3 K 0.082
4 a 0.184 3 0.112 13 0.091 5 0.084 [ 0.082
5 . 0.062 8 0.043 g 0.043 3 0.046 & 0.018

a Simulation: UCR-121J [32]. Initial conditions: [NOg] = 0.012; [NO] = 0.044; [OLE]
— 0.04; [ALK] = 0.37; [ARO] = 0.066; [ETH] = 0.042; [RCHO] = 0.06; [HCHO] = 0.011;
[HONO)] (assumed) = 0.0; k; = 0.32; simulated NO; peak time = 30 min; [HC/NO,lo = 10.5.

TaBLE V. Parameter rankings for case 3,2 small parameter variations.

Time 60 min. 120 min. 180 min. 240 min, 300 min.
Rank Parameter Partial Parameter Partial Parameter Partial Parameter Partial Parameter Partial
Variance Variance Variance Variance Variance

OUTPUT VARIABLE: NO2

1 a 0.289 a 0.423 a 0.433 « 0.441 a 0.445
2 kg 0.167 8 0.226 0.238 8 0.240 8 0.232
3 8 0.164 Ky 0.197 kg 0.198 kg 0.198 k3 0.200
q & 0.112 kZJ 0.035 k23 0.0%1 k23 0.048 k23 0.080
5 . 0.084 5 0.031 s 0.015 " .09 s 0.00%
QUTPUT YAREABLE: 03

1 a 0.464 @ 0.463 a 0.458 « 0.448 « 0.401
2 k23 0.295 k23 0.210 8 0.190 [ 0.189 k) 0.205
3 B 0.083 [ 0.155 I<23 0.165 k23 0.136 B 0.149
4 k31 0.042 l(31 0.0%94 k3.‘ 0.120 I<31 0.120 kZB 0.117
5 s 0.027 k] 0.025 k1 0.038 k1 0.07% N 0.088
OUTPUT VARIABLE: PAN

1 k23 a.521 k23 0.348 a 0.287 a 0.297 a 0.284
2 a 0.169 a 0.249 k23 0.263 k23 0.227 “31 0.225
3 $ 0.088 8 0.160 3 0.203 8 0.214 k23 0.224
4 8 0.074 k31 0.148 k3.| 0.188 k:” 0.209 [ .207
5 k31 0.070 5 0.082 8 0.026 s 0.021 & 0.021

a Simulation: EC-237s {32].

Initial conditions:

[NO,] = 0.021; [NO] = 0.075; [OLE] =
0.030; [ALK] = 0.208; [ARO] = 0.035; [ETH] = 0.175; [HCHO] = 0.0; [RCHO] = 0.001;
[HONO] (assumed) = 0.020; k1 = 0.30; simulated NO; peak time = 30 min; [HC/NO, ]o = 5.57.
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TABLE VI. Parameter rankings for case 4,2 large parameter variations.

Time 60 min. 120 min, 180 min. 240 min. 300 =min.
Rank Parameter Partial Parameter Partial Parameter Partfal Parameter Partial Parameter Partial
Yariance Yariance Yariance Yariance Variance

QUTPUT VARIABLE: K0, .
1 3 0.933 3 0.83 o 0.854 a 0.846 a 0.826
2 k23 0.018 3 0.085 3 0.091 8 6.105 B8 0.122
3 kzd 0.0m kg] 6.0Nn k51 0.018 kSl 0.009 k32 0.013
4 8 0.010 k23 0.019 & 0.008 k3l 0.009 k3l 0.010
5 I<31 C.005 c 0.010 k31 0.006 )(32 0.008 4§ 0.007
OUTPUT VARIABLE: D3
1 a 0.861 a 0.861 a 0.855 a 0.849 a 0.834
2 [ 0.033 [ 0.065 8 0.086 a 0.097 8 0.106
3 k

55 0.029 kSl 0.023 kSl 0.015 kSl 0.010 ‘L'JZ 0.013
4 13 0.015 A o.on 3 a.008 k"] 0.008 k” 0.009
S . 0.009 k]l 0.007 k?J 0.007 8 0.006 kSl 0.006
QUTPUT VARIABLE: PAN
1 a 0.643 " 0.624 a 0.634 a 0.633 & 0.618
2 [ 0.z f 0.203 8 0.243 8 0.265 [ 0.286
3 A 0.061 4 0.048 & 0.03! k31 0.027 k]] 0.027
4 kSI 0.031 k]l 0.030 kJl 0.028 & 0.023 k23 0.020
5 kZl 0.028 k“ 0.027 k” 0.022 k23 0.020 i 0.018

2 Simulation: UCR 119J {32]. Initial conditions: [NOg] = 0.041; [NO] = 0.301; [OLE]
= 0.039; [ALK] = 0.358; [ARO] = 0.070; [ETH] = 0.043; [HCHO] = 0.038; [RCHO] = 0.023:
[HONO] (assumed) = 0.0; &; = 0.32; simulated NO; real time = 200 min; [HC/NO, ] = 1.7.

TABLE VII. Parameter rankings for case 5,2 large parameter variations.

Time 60 min. 120 min. 180 min. 240 min. 300 min.
Rank Parameter Partial Parameter Partial Parameter Partial Parameter Partial Parameter Partial
variance Variance Variance Variance Variance

OUTPUT VARIABLE: NQ

1 2 a 0.535 a 0.677 a 0.695 a 0.685 a 0.665
2 4 0.223 b 0.13% 8 0.158 8 0.169 4 0.173
3 8 0.085 & 0.085% § 0.052 kSl 0.037 k51 0.030
4 C 0.046 K3y 0.038 Kqy 0.036 & 0.037 k31 0.030
5] v 0.041 o 0.015 ke 0.019 kg 0.033 8 0.028
OUTPUT VARIABLE: 03

1 a 0.453 a 0.523 a 0.466 a 0.3%4 a 0.417
2 K 0.298 ko) 0.219 kgy 0.198 Ky 0.256 Ky 0.269
3 kSZ 0.066 ky 0.097 ¥ 0.169 kgy 0.150 kgy 0.142
4 L3 0.064 kep 0.078 kSZ 0.112 kKeo 0.149 k51 0.073
5 & 0.032 i 0.037 8 0.015 ko3 0.017 8 0.035
OUTPUT VARIABLE: PAN

1 a 0.454 u 0.505 @ 0.568 a 0.644 a 0.6%99
2 8 0.229 & 0.165 8 0.123 8 0.1186 B 0an
3 key 0.144 kg 0.105 8 v.122 § 0.097 § 0.084
4 & 0.035 t 0.104 kg 0.083 k51 0.053 k31 0.035
5 ] 0.03 k31 0.040 K3y 0.042 k31 0.038 Kgy 0.027

a Simulation: UCR-121J [32]. Initial conditions: [NOs] = 0.012; [NO] = 0.044; [OLE]
= 0.04; [ALK] = 0.37; [ARO] = 0.066; [ETH] = 0.042; [HCHO] = 0.06; [RCHO] = 0.011;
[HONO] (assumed) = 0.0; k; = 0.32; simulated NO3 peak time = 30 min; [HC/NO, o = 10.5.
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TABLE VIII. Parameter rankings for case 6,2 large parameter variations.

Time 60 min. 120 min. 180 min. 240 min. 300 min.
Parameter Partial Parameter Partisl Parameter Partia) Parameter Partial Parameter Partial
Variance Yariance Variance Yariance Yariance

OUTPUT VARIABLE: MO

1 a 0.697 o 0.691 a 0.649 3 0.237 a 0.240
2 & 0.161 8 0.207 ] 0.267 ko) 0.205 ko) 0.200

A 74
3 . 840 \(5‘ 0.047 k51 0.03 kz3 0.119 |t23 0.120
4 .041 A

51 0.028 k3) 0.02v k31 0.109 LEY 0.170
3 k31 0.125 k3 0.016 4 0.020 A 0.098 A 0.090
QUTPUT VARIABLE: 03
1 n 0.718 a 0.742 a 0.716 k] 0.650 n 0.589
2 Koy 0.161 13 0.098 [ 0.149 8 0.227 & 0.285
4 9

3 ¢ 0.043 keq 0.092 P8 0.063 ko) 0.042 K, 0.040
a koo 0.035 kes 0.025 ke 0.022 ky 0.028 ke 0.03¢

5 0.018 k .01
[ ) 0.013 ky 0.016 keo 0.019 Koo 0.020
OQUTPUT VARIABLE: PAN
1 ko) 0.280 £ 0.417 2 0.49% « 0.239 1 0.230
2 B 0.259 a 0.212 n 0.230 ko1 0.208 kg 0.119
3 0.224

@ 2 ko) 0.144 kg 0.101 k23 0.121 %53 0.118
4 " 0.107 5 0.130 4 0.0R1 k3 0.105 LE n.100
5 k23 Q.QR0 k23 0.046 k“ 0.051 « n.091 * 0.09°9

a Simulation: EC-237s [32]. Initial conditions: [NOg| = 0.021; [NO] = 0.075; [OLE] =
0.030; [ALK] = 0.298; [ARO] = 0.035; [ETH] = 0.175; [HCHO] = 0.0; [RCHO] = 0.001;
[HONO] (assumed) = 0.020; &£; = 0.30; simulated NO» peak time = 30 min; [HC/NO,]o = 5.57.

NOs Behavior

The results of the FAST sensitivity/uncertainty analyses help to point
out and affirm observations about the qualitative aspects of the chemical
mechanism and also provide some new insight into the essential features
of the system. The ranking of those parameters to which the predictions
of NOy behavior are most sensitive highlights the most important of the
many mechanisms by which NOs is produced. In all the small parameter
variation cases, the parameters dominating NOs behavior around the time
of the NOy peak are the photolysis rate, k1, and the nitric acid formation
step. Before and after the predicted peak time, variations in the rates of
those reactions forming peroxy radicals, especially the aldehyde photolysis
rates, have the most marked effect. In the simulation with the high hy-
drocarbon to NO, ratio (case 2), the production of RO3 and HO; from the
ozone—olefin reaction is also important. |

As discussed earlier, peroxy radicals act to convert NO to NOs by

. 52
RO; + NO — RO + NO;

21
H02 + NO — OH + NO,
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Hence, the rate constants associated with the above reactions, as well as
the quantities of ROs and HOs available, should have a distinct effect on
NOs concentration levels. The fact that aldehyde photolysis, alkoxyl
radical decomposition, and ozone-olefin reactions all produce peroxy
radicals explains the large partial variances associated with these param-
eters. Relative to competing reactions, small variations in ks, the ROo-NO
rate constant, do not produce a large effect on NO, predictions. The reason
for this is that the RO>-NO rate constant is so large that other reactions
cannot effectively compete for ROs.

The differences in chemistry brought about by changes in initial condi-
tions are evident from a close examination of the outcome of the larger
parameter variation studies, cases 4-6. When the initial hydrocarbon to
NOy ratio is low (case 4), «, the fraction of times that HO, is produced from
RO, makes the largest contribution to variations in NOs predictions.
Where initial HC/NO, levels were higher (case 5), uncertainties in
ozone-olefin product distribution and in the production of aldehydes from
alkoxyl radicals also contributed significant variances. In systems where
initial HC/NO; ratios are small, or in which fairly unreactive species
comprise the hydrocarbon mix, there are not enough radicals present to
convert all the available NO to NOs. As a result, in smog chamber exper-
iments of these systems NOs peaks are broad and occur later in the test.
For those initial mixtures which are richer in hydrocarbons, or contain very
reactive species, there are a larger number of peroxy radicals for the NO,
in the chamber. As the fraction of time that ROs is produced from aikoxyl
radical reactions is increased (represented by decreasing «), the number
of peroxy radicals in the simulation increases. This occurs as a result of
the cyclic effect of producing RO; from alkoxyl radical reactions and sub-
sequent reconversion to RO through reaction with NO:

44
RO — (1 — @)RO2 + ¢HO; + SHCHO + YRCHO

52
RO; + NO — RO + NO,

Since simulations with low initial HC/NO, levels can be thought to be
radical deficient, « varied over its entire range of uncertainty has a large
influence on NO, predictions. However, & has much less effect on cases
in which the initial HC/NO, ratio is large than when it is small, as other
modes of radical production besides RO reactions occur to a significant
extent in the high HC/NO, situation.

Os Behavior

Much of the interest in mechanisms for photochemical smog is focused
on understanding the avenues for the production of ozone. The results
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of the sensitivity analyses are extremely pertinent to this under-
standing.

Time-varying plots of the partial variances of the major parameters af-
fecting the production of ozone are given in Figures 3-8. As was the case
for NOs behavior, the results are substantially different for the various
initial conditions. For the higher [HC]/[NO;, |, simulations of cases 2 and
3, small variations in the NO, photolysis rate have the biggest impact on
ozone formation. On the other hand, at times in the analysis of the low
[HC]/[NO]o run (case 1), ozone concentrations are more influenced by
peroxy radical production routes. In the large parameter variation cases
« dominates the ranked list for low initial HC/NO, ratios, whereas the other
parameters in the alkoxyl radical reaction and the decomposition of the
peroxynitrates are also important for high initial HC/NO, ratios.

The effects of the parameter variations on ozone behavior can be ex-
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Figure 3. Time-varying partial variances of the major parameters affecting
ozone for case 1 (small parameter variation).
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Figure 4. Time-varying partial variances of the major parameters affecting
ozone for case 2 (small parameter variation).

plained in much the same fashion as the NO- discussion earlier. As can
be seen from Figure 1, the ozone level at any time is the result of the complex
interplay between NO and NO,, peroxy radicals, and ozone. Qzone builds
up as NO is converted to NOy without consuming Q3. When concentration
levels of peroxy radicals are low, as in simulations with a lean initial hy-
drocarbon mix, reactions (1)-(3) exist in a photostationary state. As peroxy
radical levels rise, however, the rates of reactions that convert NO to NO,
without consuming O3 become comparable to or surpass the rate of reaction
{3), modifying the equilibrium set up by reactions (1)-(3). Simulations
with low peroxy radical levels will therefore show a much larger sensitivity
to those parameters, such as «, which substantially affect the concentrations
of the peroxy radicals. When RO; levels are higher, as in simulations of
high initial HC/NO, mixtures, there already exists an adequate number
of free radicals present to convert NO to NO2. Hence, the sensitivity of
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Figure 5. Time-varying partial variances of the major parameters affecting
ozone for case 3 (small parameter variation).

the system lies in NOs photolysis rates. Moreover, in these systems, the
effects of the large variation cases are divided between other parameters
which affect the levels of both peroxy radicals and NOs.

PAN Behavior

PAN predictions are influenced by both NO; and RCO3 concentration
levels. Results of the sensitivity/uncertainty analysis can be explained
in this light. For case 1, the parameters which highly influence the rate
of PAN formation are the nitric acid formation rate constant ko3 which
directly affects the NOg level, and the two coefficients o and 7 associated
with RO decomposition which influences the concentration of RCHO.
PAN is affected by RCHO levels because peroxyacyl radicals RCO3 are
formed primarily through the reaction of OH with aldehydes. RCO3 then



481

1158 FALLS, McRAE, AND SEINFELD
1.00
a
/

0.80
w 0860 -
O
=z
<
@
<J
>
—
< 040 |-
)_
o
<T
a

020

k B
- 45 /
k
s
0 L
o] 60 120 180 240 200

ANALYSIS TIMES (min)

Figure 6. Time-varying partial variances of the major parameters affecting
ozone for case 4 (large parameter variation).

reacts with NO; to form PAN through a competing reaction with NO.
Thus, those parameters that affect RCO; production and the availability
of OH radicals in the mechanism will subsequently influence PAN levels.
For the small parameter variation cases 2 and 3, in which the initial HC/
NO, ratios are higher, parameters perturbing NO, levels are much more
important in PAN production.

These results are seen even more clearly in the combined sensitivity/
uncertainty analyses in cases 4-6. For the low HC/NO, simulation, the
parameters kg3 and « have large partial variances. The same results are
observed in the higher HC/NO, cases.

Conclusions and Recommendations

Sensitivity and sensitivity/uncertainty analyses have been performed
on a representative photochemical smog reaction mechanism. These
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studies have shown that the major sensitivity of the NOg, O3, and PAN
concentrations lies in photolysis rates for NOs and aldehydes. On the other
hand, when all parameters studied are allowed to vary over their entire
ranges of uncertainty, generalized stoichiometric coefficients and certain
rate constants have been shown to exert the most influence on the predic-
tions of the mechanism.

Within present experimental uncertainties, the current mechanism for
photochemical smog provides a good representation of the chemistry of
the major species in the polluted troposphere as evidenced by comparisons
of predicted and observed concentrations in smog chamber studies [7].
Based on the sensitivity studies presented here, the level of detail in the
treatment of free radical and hydrocarbon chemistry in the mechanism
seems to be consistent with the current level of understanding of these
processes. However, as additional fundamental studies of alkoxyl radical
chemistry, shown by the sensitivity/uncertainty portion of this study to
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Figure 8.. Time-varying partial variances of the major parameters affecting
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be highly important in the reaction network, are carried out, a more highly
resolved radical lumping procedure than is used here may be necessary to
improve the accuracy of the mechanism. In addition, when a detailed re-
action mechanism for aromatic compounds becomes available, lumped
aromatic reaction steps will undoubtedly need to be refined. Because no
investigation into the role of aromatics has been attempted in this work,
little can be said about the effects such improvements would have on the
overall predictions.

In summary, based on these findings, we recommend that experimental
work in atmospheric chemistry be concentrated in the following areas:

(a) Studies of decomposition, isomerization, and O, reaction pathways
of alkoxyl and hydroxyalkoxyl radicals

(b) Improvements in knowledge of the spectral distribution and level
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of actinic irradiance for both atmospheric studies and smog chamber ex-
periments

(c) Better measurements of quantum yields and absorption cross sec-
tions for aldehydes
and, less importantly, that work be done on:

(d) Olefin—ozone product distributions, needed for accurately modeling
systems in which olefins comprise a large fraction of the hydrocarbon
mix

(e) Determination of rate parameters associated with the formation
and decomposition of peroxynitrates

(f) Determination of emission levels and routine atmospheric mea-
surements of aldehydes, because of their pronounced influence on radical
concentrations.
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10.7 Conclusions

Because of the complex mature of the planetary boundary layer
an integral element of any air quality modeling study should be a
formal assessment of the effects of uncertainties in the parameteri-
zation of the physical processes. In this chapter a variety of methods
for performing such sensitivity analyses have been discussed. Parti-
cular attention was given to Fourier Amplitude Sensitivity Test (FAST).
Unlike conventional methods the FAST procedure is ideally suited to
the task of examining the global sensitivity of nonlinear mathematical
models. The reason for this is that the technique allows arbitrarily
large variations in either system parameters or input variables. This
characteristic was exploited in two practical applications involving

components of the atmospheric diffusion equation.



CHAPTER 11

EVALUATION OF MODEL PERFORMANCE

11.1 Iantroduction

Previous Chapters of this study described the formulation and
testing of the individual components of the atmospheric diffusion equa-
tion. The most critical test however, is the ability of the system as
a whole to satisfactorily describe the concentration dynamics occurring
in an airshed. This Chapter presents an assessment of the model per-
formance when applied to one urban region, the South Coast Air Basin of
Southern California. The particular period to be studied, for which
detailed emissions and meteorological information have been assembled,

1s 26-27 June 1974.

11.2 Performance Evaluation of the Airshed Model

There are three steps that need to be undertaken when evaluating
the performance of a model: (1) A basic assessment of model validity;
(2) comparison of predictions and observations for past events; and (3)
analysis of the sensitivities of the predictions to uncertainties in

model components.

1=

Model validity refers to the essential correctness of the model in
terms of its representation of the basic chemistry and physics as well

as to its accuracy of numerical implementation as measured by adherence

to certain necessary conditions such as conservation of mass.
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Discrepancies in validity arise as a consequence of the need to employ
simplifying assumptions during the mathematical formulation. As the
model described in previous chapters was developed, each component,
advection and turbulent diffusion, chemical kinetics, emissions and
surface removal, was formulated taking into account the latest relevant
data and information (Table 11.1). In each section of the report an
attempt has been made to test individual model components in a manner
that would assess the validity of the basic representation of the
atmospheric physics and chemistry. Every effort has been made to
include as much state-of-the-art information as possible, and, given
the present generation of computing capabilities, the model represents
the most valid practical one for an accurate description of urban air

pollution.

Most emphasis in model performance evaluation has traditionally
been given to step (2), comparison of predictions and observations for
past events. Usually it is impossible to ascertain whether discrepan-
cies between predictions and observations are due to errors in imput
data, such as emissions inventories, or im the representation of the
basic physical and chemical processes. While it is imperative to
separate the influences of these uncertainties, the practical problems
associated with obtaining the necessary emissions and meteorological
information virtually precludes a definitive assessment of the formal
validity of a model using field data. Nevertheless, comparisons of
predictions and observations for past events is probably the crucial

component of the model evaluation. If the test conditions are to be
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representative of those cccuring in an actual airshed then it is impor-—
tant to recognize that the data collection requirements can involve an
enormous expenditure of time and resources. Some of the needed infor-
mation is summarized in Table 11.2. The present chapter is devoted, in
large part, to an assessment of the application of the model in repro-
ducing the important features of a two-day smog episode in the South
Coast Air Basin (SCAB) of Southern California. This basin, in many
respects, is the ideal one for evaluating the performance of an urban
model since it has considerable variations in meteorology and emission
flux densities and has the most persistently severe photochemical air

pollution in the world.

One way to attempt to understand the causes of discrepancies
between predictions and observations is to analyze the model to deter-—
mine to what input parameters and variables the model is most sensi-
tive. When combined with estimates of the levels of uncertainty asso-
ciated with each input parameter and variable, this aﬁalysis, a so-
called sensitivity analysis, will indicate how much of the overall
uncertainty of the model output is associated with the individual
uncertainty in each model input. Then the overall estimated uncer-
tainty in the model predictiomns can be compared with the differences
between predictions and observations in specific applicatioms. Chapter
10, for example, presents the results from a sensitivity analysis of
the kinetic mechanism. There have recently been several studies of the
sensitivity of photochemical air quality models to input parameter

variations or uncertainties (Falls et al., 1979; Dunker, 1980, 1981;
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TABLE 11.2

Summary of Input Data Needed to Carry Out
A Model Performance Evaluation Study

BASIC INPUT DETAILED COMPONENTS RELEVANT
CHAPTERS
Meteorology Three dimensional wind field 3,4,6

Mixing depth

Topography and surface roughness
Turbulent diffusion coefficients
Solar insolation

Ultraviolet radiation
Temperature

Relative humidity

(@)
(00

Chemical Kinetics Reaction mechanism
Reaction rate constants
Reaction stoichiometry
Surface deposition velocities
Hydrocarbon lumping procedure

Air Quality Data Initial and boundary conditions 3
Verification data

Emission Inventory Mobile sources 7
Stationary sources
Area sources
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Seigneur et al., 1981; Tilden and Seinfeld, 1982). These studies,
although carried out on models somewhat different from that under
analysis here, do indicate the variables to which large photochemical
models are most sensitive. Rather than repeating these calculations in
this chapter, relevant results from these earlier studies will be cited
where appropriate. One aspect of the input uncertainty question did,
however, appear to warrant consideratiom, that of assessing the accu-—
racy of the emissions inventory. For this reason a new technique for
evaluating the influence of errors in individual source categories on

the overall inventory is presented.

11.3 Definition of the Region of Interest

The SCAB boundaries are shown in Figure 11.1. The grid system
origin can be defined accurately on the Universal Tramsverse Merator
(UTM) system. For the present study the origin is located in UTM zone
11 at E 560 km and N 3680 km. The region extends 400 km in a westerly
(x) direction and 160 km north (y). The lower right hand cormer was
chosen for the origin because of the UTM zome change 60 km inside the
western border of the modeling region. For the purposes of locating
sources, the region has been further subdivided into 5x5 km cells.
Once the grid system has been established then it is possible to pro-
cess much of the model input data. for example, Figure 11.2 is a per-
spective view of the topography of the South Coast Air Basin. This
information is needed for the wind field gemeration procedures. Exten-
sive use was made of these three—dimensional displays to check data

consistency and orientatiom.
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FIGURE 11.2

Perspective View of the Topography of the

10)

(Vertical Scale 1

South Coast Air Basin.
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11.4 The Episode of 26-28 June 1974 in the South Coast Air Basin

During the week of 26-28 June 1974, a severe air pollution episode
was experienced in the South GCoast Air Basin of Califormia (CARB,
1974a). Hourly averaged ozone concentrations reached 0.50 ppm in the
Upland-Fontana area, and values above 0.35 ppm were reported at 10
other stations. During the period 23-28 June, 1974 wind speeds were
considerably lower than normal. (Radiosonde data from Pt. Mugu indi-
cated that the wind speeds averaged about 1.6 m s—1 between the surface
and 750 mb height; the normal June averaged is about 4.2 m s_l.) At El
Monte, the maximum depth of the mixed layer was approximately 750 m on
each of the days 26-27 June. This value is unseasonably low. Tempera-—
tures between the 300 and 900 m levels reached 30°C during 27 and 28
June, while the surface temperatures dropped as low as 15°¢ during the
night. The intense nocturnal inversion was caused partly by subsidence
and partly by radiation from the surface since the dry air aloft kept
the sky cloudless (CARB, 1974b). In summary, the low wind speeds, high
temperatures and low inversion base produced conditions conducive to
the accumulation of precursor emissions, and in turn, to the production
of high ozone levels. These high ozone levels provide a stringent test
of the ability of the model to reproduce extreme events. Another
important reason for choosing the 1974 period was that detailed emis-
sions inventories, commissioned by the State of California Air

Resources Board, were available for that year.



